<福島第一原子力発電所プラント状況等のお知らせ> (日報:平成25年9月30日 午後3時現在)

平成 25 年 9 月 30 日東京電力株式会社 福島第一原子力発電所

福島第一原子力発電所は全号機(1~6号機)停止しています。

1号機(廃止)

- ・ 平成23年3月12日午後3時36分頃、直下型の大きな揺れが発生し、1号機付近で大きな音があり白煙が発生しました。水素爆発を起こした可能性が考えられます。
- ・ 平成23年12月10日午前10時11分、給水系配管からの注水に加え、炉心スプレイ系注水配管から原子炉への注水を開始しました。
 - 現在の注水量は給水系配管から約2.5m³/時、炉心スプレイ系注水配管から約2m³/時です。
- ・ 平成23年4月7日午前1時31分、原子炉格納容器内へ窒素ガスの注入を開始しました。
- ・ 平成23年8月10日午前11時22分、使用済燃料プール冷却浄化系の代替冷却装置によるプール水の循環冷却を開始しました。
- ・ 平成23年11月30日午後4時4分、原子炉圧力容器へ窒素封入操作を開始しました。
- ・ 平成23年12月19日午後6時、原子炉格納容器ガス管理システムの本格運用を開始しました。
- ・ 平成25年7月9日午前10時25分、サプレッションチェンバにおける残留水素の排出、および サプレッションチェンバ内の水の放射線分解による影響を確認するため、窒素ガス封入を開始 しました。

2号機 (廃止)

- ・ 平成23年3月15日午前6時頃に圧力抑制室付近で異音が発生、同室の圧力が低下しました。
- ・ 平成23年9月14日午後2時59分、給水系配管からの注水に加え、炉心スプレイ系注水配管から原子炉への注水を開始しました。
 - 現在の注水量は給水系配管から約 1.8 m³/時、炉心スプレイ系注水配管から約 3.4 m³/時です。
- ・ 平成23年5月31日午後5時21分、使用済燃料プール冷却浄化系の代替冷却装置によるプール 水の循環冷却を開始しました。
 - 平成25年9月30日午前6時27分、使用済燃料プール代替冷却系について、同冷却系の瞬時電圧低下対策工事に伴い冷却を停止しました。冷却停止時の使用済燃料プール水温度は22.3℃です。なお、停止期間は10月4日までの約107時間を予定しており、その間のプール水温度上昇率評価値は0.172℃/時と評価されることから、運転上の制限値65℃に対して余裕があり、使用済燃料プール水温管理上問題ありません。
- ・ 平成23年6月28日午後8時6分、原子炉格納容器内へ窒素ガスの注入を開始しました。
- ・ 平成23年10月28日午後6時、原子炉格納容器ガス管理システムの本格運用を開始しました。
- ・ 平成23年12月1日午前10時46分、原子炉圧力容器へ窒素封入操作を開始しました。
- ・ 平成25年4月1日午前0時、原子炉建屋排気設備の調整運転において異常が見られないことから、本格運用に移行しました。

3号機(廃止)

- ・ 平成23年3月14日午前11時1分頃、1号機同様大きな音とともに白煙が発生したことから、 水素爆発を起こした可能性が考えられます。
- ・ 平成23年9月1日午後2時58分、給水系配管からの注水に加え、炉心スプレイ系注水配管から原子炉への注水を開始しました。
 - 現在の注水量は給水系配管から約1.8m³/時、炉心スプレイ系注水配管から約3.4m³/時です。
- ・ 平成23年6月30日午後7時47分、使用済燃料プール冷却浄化系の代替冷却装置によるプール

水の循環冷却を開始しました。

- ・ 平成23年7月14日午後8時1分、原子炉格納容器内へ窒素ガスの注入を開始しました。
- ・ 平成23年11月30日午後4時26分、原子炉圧力容器へ窒素封入操作を開始しました。
- ・ 平成24年3月14日午後7時、原子炉格納容器ガス管理システムの本格運用を開始しました。

4号機(廃止)

- ・ 平成23年3月15日午前6時頃、大きな音が発生し、原子炉建屋5階屋根付近に損傷を確認しました。
- ・ 平成23年7月31日午後0時44分、使用済燃料プール冷却浄化系の代替冷却装置によるプール 水の循環冷却を開始しました。

5号機(定期検査で停止中)

- 安全上の問題がない原子炉水位を確保しています。
- ・ 平成23年3月19日午前5時、残留熱除去系ポンプを起動し、使用済燃料プールの冷却を開始 しました。
- ・ 平成23年7月15日午後2時45分、残留熱除去海水系ポンプ(B系)による残留熱除去系(B系) の運転を開始しました。
- ・ 平成24年5月29日午前10時33分、これまで機器ハッチを開口することにより行っていた原子炉格納容器内の排気について、原子炉格納容器内より直接行うため、震災以降停止していた原子炉格納容器排気ファンを起動しました。その後、影響は確認されなかったことから平成24年6月1日午前10時30分、連続運転を開始しました。
- ・ 平成24年8月29日午後1時、補機冷却海水系ポンプ(A)の復旧作業が完了し、本格運用を 開始しました。これにより3台の補機冷却海水系ポンプが復旧しました。
- ・ 残留熱除去海水系ポンプ(A) および(C) の復旧作業が完了し、平成24年8月30日午前11時33分、残留熱除去系(A) を起動しました。運転状態に異常がないことから、残留熱除去系(A) の本格運用を開始しました。これにより、本設の残留熱除去系はA系とB系の両系統が復旧しました。

6号機(定期検査で停止中)

- 安全上の問題がない原子炉水位を確保しています。
- ・ 平成23年3月19日午後10時14分、残留熱除去系ポンプを起動し、使用済燃料プールの冷却を開始しました。
- ・ 平成23年9月15日午後2時33分、原子炉は残留熱除去系、使用済燃料プールは補機冷却系および燃料プール冷却系、各々の系統による冷却を開始しました。
- ・ 平成 24 年 5 月 15 日午後 2 時 20 分、これまで機器ハッチを開口することにより行っていた原子炉格納容器内の排気について、原子炉格納容器内より直接行うため、震災以降停止していた原子炉格納容器排気ファンを起動しました。その後、影響は確認されなかったことから平成 24 年 5 月 18 日午後 2 時 12 分、連続運転を開始しました。

その他

- ・ 平成23年6月17日午後8時、水処理設備において滞留水の処理を開始しました。また、7月2日午後6時、水処理設備による処理水を、バッファタンクを経由して原子炉へ注水する循環注水冷却を開始しました。その後、平成25年7月5日、原子炉注水系信頼性向上対策として、復水貯蔵タンク炉注水系による1~3号機原子炉注水の運用を開始しました。
- ・ 平成23年8月19日午後7時41分、セシウム吸着装置から除染装置へのラインと第二セシウム 吸着装置の処理ラインの並列運転による滞留水の処理を開始しました。
- ・ 平成23年10月7日午後2時6分、伐採木の自然発火防止や粉塵の飛散防止を目的とした構内 散水を、5,6号機滞留水浄化後の水を利用し、開始しました。

- ・ 地下水による海洋汚染拡大防止を目的として、平成23年10月28日、1~4号機の既設護岸の 前面に海側遮水壁の設置に関する工事に着手しました。
- ・ 所内共通ディーゼル発電機(B)については、これまで復旧作業を進めてきましたが、平成24年12月26日午前0時、所内共通ディーゼル発電機(A)に加えて、保安規定第131条に定める異常時の措置の活動を行うために必要な所内共通ディーゼル発電機として運用開始しました。
- ・ 平成25年3月30日午前9時56分、多核種除去設備(ALPS)の3系統(A~C)のうちA 系統において、水処理設備で処理した廃液を用いた試験(ホット試験)を開始しました。 6月13日午前9時49分、多核種除去設備(ALPS)B系統において、水処理設備で処理した廃液を用いた試験(ホット試験)を開始しました。
 - 6月15日午後11時頃、多核種除去設備A系のバッチ処理タンク(2A)において、当社社員が結露状況を確認した際に、当該タンク下の漏えい水受けパン内に、変色(茶色)した水の滴下跡があることを発見したことから、6月16日午後11時20分にA系を停止しました。
 - 8月8日午後0時55分、A系のバッチ処理タンクからの水漏れに関する対策をB系でも実施するため、B系を停止しました。

多核種除去設備A系バッチ処理タンク(以下、バッチ処理タンクという)のすき間腐食による 貫通欠陥について、原因調査の結果、バッチ処理タンク2Aで発生したタンク下部からの漏え いは、生成した鉄沈殿物がタンク内に堆積・付着することによるすきま環境の形成と、薬液注 入(主に次亜鉛素酸)等による腐食環境の促進といった複合的な要因が重畳したことにより、 想定以上の腐食が発生し、欠陥が貫通、漏えいに至ったものと推定しました。吸着塔6に確認 された腐食については、アルカリ環境下ではない吸着塔6に充填された銀添着活性炭により腐 食を発生、促進させたものと推定しました。吸着塔点検ロフランジ部については、よどみ状態 で局部腐食しやすい低流速となっていることも、腐食を促進する要因になっていたと推定しま した。再発防止対策として、バッチ処理タンク欠陥部補修の後、タンク内面にゴムライニング (クロロプレンゴム)を施工いたします。また、すきま腐食発生の可能性があるフランジに対 し、ガスケット型犠牲陽極等の施工いたします。このうち、多核種除去設備C系については、 再発防止対策、水平展開事項および腐食発生・促進リスクの低減処置が完了したことから、9 月27日午前0時4分よりホット試験を開始しました。なお、ホット試験開始後は定期的に点検 を実施し、対策の効果を確認します。その後、同日午後10時37分にバッチ処理タンクからス ラリーを排出するラインにおいて流量が十分出ていないため、スラリー移送ポンプを停止し、 循環待機運転に移行しました。

9月28日、設備の確認を行い、スラリー移送ポンプおよび移送配管(バッチ処理タンク1C,2Cの排出ライン合流部から循環タンク)に異常がないこと、また、バッチ処理タンクおよび移送配管からの漏えいがないことを確認しました。また、バッチ処理タンク2Cの水抜きを行い、カメラによるバッチ処理タンク2Cの内部確認を行うため、同日午後4時4分に、多核種除去設備C系統の循環待機運転を解除しました。

9月29日、バッチ処理タンク2Cの水抜きを行い、カメラによる内部確認を実施したところ、内部に異物らしきものを発見・回収し、タンク内部を昇降する仮設の梯子を固定するために使用したゴムパッドと判断しました。その後、バッチ処理タンク内部には、タンク内部を昇降する仮設梯子固定用のゴムパッド(以下、「梯子用ゴムパッド」という)が2箇所、仮設足場設置用のゴムパッド(以下、「足場用ゴムパッド」という)が4箇所あり、合計6箇所のゴムパッドがありますが、梯子用ゴムパッドはテープで取り付けられており、その内1箇所が剥がれドレン孔を塞いだため、流量が低下したものと判断しました。そのため、残り1箇所の梯子用ゴムパッドについても回収しました。なお、足場用ゴムパッドについては、接着剤で固定されていることおよび取り付けた状態に異常のないこと、さらに、バッチ処理タンク2C内にその他の異物が無いことを確認しました。

また、類似のバッチ処理タンク1 C内部について調査した結果、足場用ゴムパッド (4箇所) は、接着剤で固定されていることおよび取り付けた状態に異常のないことを確認しました。また、バッチ処理タンク2 Cにおいてドレン孔を塞いだ梯子用ゴムパッドは無いこと、ならびにバッチ処理タンク1 C内部に異物が無いことを確認しました。

その後、バッチ処理タンク1C・2Cの水張り作業が完了し、準備が整ったことから、9月30 日午前2時38分に多核種除去設備C系の汚染水処理を再開しました。

・ 平成25年7月1日、地下貯水槽の汚染水は全て移送を終了していますが、拡散防止対策および サンプリングは継続して実施中です。

<拡散防止対策>

地下貯水槽漏えい検知孔水 (No. 1 北東側、No. 2 北東側、No. 3 南西側) の全ベータ放射能濃度の低下が緩やかであることから、地下貯水槽 No. $1 \sim 3$ にろ過水または淡水化装置 (RO) 処理水 (全ベータ放射能濃度:約 $1 \times 10^1 \mathrm{Bq/cm}^3$) を移送し希釈する処置を適宜実施しました。

「最新の希釈実績】

- ・地下貯水槽 No. 1 (6月19日~):8月3日、約60m³のろ過水を注水。
- ・地下貯水槽 No. 2 (6月27日~):8月1日、約60m3のろ過水を注水。
- ・地下貯水槽 No. 3 (7月24日~):8月12日、約107m³の当該地下貯水槽ドレン孔水(北東側)を注水。

9月29日、地下貯水槽 No. $1\sim3$ の漏えい検知孔内に漏えいした水を仮設地上タンクへ、地下貯水槽 No. 1, 2のドレン孔内に漏えいした水を当該地下貯水槽内へ移送する処置を実施しました。

<サンプリング実績>

9月29日、地下貯水槽No. 1~7のドレン孔水 (14 箇所)、地下貯水槽No. 1~4,6の漏えい検知孔水 (10 箇所のうち2 箇所は試料採取不可)、地下貯水槽観測孔 (22 箇所) についてサンプリングを実施しました。分析結果については、前回(9月28日採取)実施したサンプリングの分析結果と比較して大きな変動は確認されませんでした。地下貯水槽No. 3の漏えい検知孔およびドレン孔の全ベータ値については、地下貯水槽の浮き上がり対策工事に伴い、上昇傾向が継続しています。引き続き、当該漏えい検知孔およびドレン孔の濃度変動に注視してまいります。

・ 1~4号機タービン建屋東側に観測孔を設置し地下水を採取、分析しており、平成25年6月19日、1,2号機間の観測孔において、トリチウムおよびストロンチウムが高い値で検出されたことを公表し、監視を強化するとともに、1,2号機タービン建屋東側に設置したウェルポイントおよび集水ピット(南)から地下水をくみ上げ中です。

<最新の地下水移送実績>

8月31日午後3時50分、ウェルポイントおよび集水ピット(南)から2号機立坑Cへの移送を停止し、同日午後3時55分、2号機タービン建屋への移送を開始しました。

9月3日から日中時間帯に2号機立坑B水(トレンチ閉塞により集められた水)を2号機タービン建屋へ移送するため、ウェルポイントおよび集水ピット(南)地下水の移送先の切り替えを順次実施していましたが、トレンチ閉塞作業がほぼ終了し、9月7日からウェルポイントおよび集水ピット(南)地下水を2号機タービン建屋へ移送中です。

<サンプリング実績>

今回、新たに採取した地下水観測孔No. 2-5 (No. 2の山側) 採取水 (9月29日採取分) の測定結果は以下のとおりです。

<地下水観測孔No. 2-5の測定結果:9月29日採取分>

・セシウム 134 : 3.1 Bq/L ・セシウム 137 : 6.9 Bq/L

 ・全ベータ
 : 32,000 Bq/L

・マンガン 54 : 0.62 Bq/L

・アンチモン 125:26 Bq/L

・ 平成 25 年 8 月 19 日、発電所構内H 4 エリアのタンク堰内および堰のドレン弁の外側に水溜まりがあることを確認しました。H4 エリア内の I グループ No.5 タンク近傍の底部で水の広がりがあることから、当該タンクの水位を確認した結果、現時点で約 3 m水位が低下(水量:約300 m³)していることを確認しました。堰内の水は一部回収を実施していますが、ドレン弁を通して堰外へ出ていると思われることから周辺の土壌の回収を行うとともに広がりの範囲について引き続き調査を実施します。その後、H4 エリアタンクの東側にある排水路の壁面において筋状の流れた痕跡があり、当該部の表面線量当量率が最大 6 mSv/時(β + γ 線(70 μ m線量当量率))であることを確認しました。このことから、汚染した土砂等が排水路に流れた可能性があるとし、今後、詳細な調査および評価を行います。

8月22日、H4エリア I グループ No. 5 タンク内の水および仮設タンクに回収していた水(堰内に溜まっていた水)をH4エリア内のB グループ No. 10 タンクへ移送を完了しました。

8月22日、漏えいしたタンクと同様のフランジ型の他エリアのタンクについて総点検(外観点検、線量測定)を実施しました。タンクおよびドレン弁の外観点検において、漏えいおよび水溜まりは確認されませんでしたが、H3エリアのタンク周辺において、部分的に線量が高い箇

所(2箇所)を確認しました。当該箇所は乾燥しており、堰内および堰外への流出は確認されませんでした。また、当該タンクの水位は受け入れ時と変化がないことを確認しました。

また、5,6号機の滞留水の保管等に使用しているフランジタイプタンクの健全性確認(外観目視確認、水位確認)を8月26日までに実施し、異常が無いことを確認しました。

漏えいが発生したH4エリア内のH4エリアIグループ No. 5タンクについて確認を行っていたところ、当該タンク含む3基(H4エリアIグループ No. 5タンク、H4エリアIグループ No. 10 タンク、H4エリアIグループ No. 3タンク)が当初H1エリアに設置されていたこと、H1エリアで当該タンクが設置された基礎で、地盤沈下が起こったため、H2エリアに設置する計画でしたが、実際には、H4エリアに設置されていることが判明しました。No. 5タンクからの水漏れと、H1エリアの基礎が地盤沈下した際に設置していた経過があることの因果関係は不明ですが、漏えいリスクの低減対策として、タンク内の水の移送を実施しました。

<最新の移送実績>

- ・8月25日午後3時57分より、H4エリアIグループNo.10 タンクからH4エリアBグループNo.10 タンクへの移送を開始しました。8月27日午前2時7分、移送を完了しました。
- ・8月29日午前10時30分より、H4エリアⅡグループNo.3タンクからH4エリアBグループNo.10タンクへの移送を開始しました。9月2日午前11時3分、降雨対策のため移送を停止しました。

8月31日のパトロールにおいて、4箇所の高線量当量率箇所 ($\beta + \gamma$ 線 (70μ m線量当量率))を確認しましたが、関連する全てのタンクの水位に低下は見られず、排水弁も閉としているため、堰外への漏えいはないと評価しました。

このうち、H5エリアIVグループ No. 5タンクとH5エリアIVグループ No. 6タンクの連結配管 部の上部にある配管の保温材を押したところ、滴下が確認されたことから、滴下した床面を測定したところ、約 230mSv/時であることを確認しました。当該の連結配管からの滴下は継続しておりませんが、当該配管下部の床面に大きさ約 20cm×約 20cm の変色箇所(乾いた状態)があり、その後、当該部の保温材を外して確認したところ、各タンクと連結配管を接続している隔離弁 (2 ± 2) のうち、No. 5 タンク側の隔離弁と連結配管を繋いでいるフランジ部より約 90 秒に 1 滴の滴下があることを確認したことから、同日、当該フランジ部に吸着マットを巻き付け、ビニール養生を施すとともに、当該フランジ部の床面にドレン受けを設置しました。なお、当該連結配管の隔離弁 (2 ± 2) については、No. 5 側および No. 6 側のどちらも閉められていたことを確認しております。 9 月 1 日、当該部のフランジボルト 12 本の増し締めを実施し、漏えいがないことを確認しました。念のためH5エリアIVグループ No. 5 タンクの水位レベルの測定を実施し変動のないことを確認しました。

<最新のパトロール結果>

9月 29 日のパトロールにおいて、高線量当量率箇所(β + γ 線(70 μ m線量当量率))は確認されませんでした。また、堰内床部近傍は、堰内に溜まった雨水(深さ 4 \sim 13 c m程度)による遮へいにより、引き続き線量当量率が低い状態となっています。さらに、目視点検によりタンク全数に漏えい等がないこと(漏えい確認ができない堰内溜まり水内を除く)、サーモグラフィーによる水位確認(9月 28 日撮影分の分析結果)により水位に異常がないことを確認しました。

8月22日のH4エリア以外のタンク総点検(外観点検、線量測定)において確認された、部分的に線量が高いタンク(H3エリアBグループNo. 4タンク、H3エリアAグループNo. 10 タンク)について、これらのタンクの外部に水の滴下等は確認されていませんが、念のため、8月29日から9月18日まで、タンク内の水をR0廃液供給タンクへ移送を実施しました。また、H3エリアAグループNo. 10 タンクの残水については、H3エリアBグループNo. 5タンクへ移送が終了しております。

<サンプリング実績>

福島第一南放水口付近 (T-2)、H4エリア付近B-C排水路合流地点 (C-1)、C排水路合流点前 (B-3)、B排水路ふれあい交差点近傍 (B-0-1)、C排水路正門近傍 (C-0)、C排水路 35m盤出口 (C-2) で水を採取し、セシウム 134、セシウム 137、全ベータの核種分析を実施しました (9 月 29 日採取)。分析結果については、前日 (9 月 28 日採取) と大きな変動はありません。

<u>H4エリアタンク周辺に設置した観測孔(E-1, E-2, E-3, E-4, E-5)の9月28日採取分の全ベータ、トリチウムの分析結果については、前回(9月27日採取)の分析結果と比較して大きな変動はありません。</u>

・ 平成25年8月27日午後5時、4号機原子炉ウェル、原子炉圧力容器、使用済燃料プール内の

ガレキ撤去および炉内機器の移動作業を開始しました。

- ・ 平成25年9月24日午前10時22分、3号機タービン建屋地下から集中廃棄物処理施設(雑固体廃棄物減容処理建屋[高温焼却炉建屋])へ溜まり水の移送を開始しました。
- ・ 1~4号機建屋に隣接している井戸(サブドレンピット)の浄化試験をした結果、ピット内の 溜まり水から放射性物質が検出されており、その流入経路としてフォールアウトの可能性があ ることから、新たに1~4号機建屋周辺に観測井を設置し、フォールアウトの影響について確 認することとしています。
- ・ 平成25年9月24日午前9時56分、2号機タービン建屋地下から3号機タービン建屋地下へ溜まり水の移送を開始しました。
- ・ 平成25年9月12日午後3時20分頃、5・6号機滞留水処理装置(車載型)から水が漏えいしていることを、当社社員が発見しました。このため、ただちに滞留水処理装置を停止し、漏えいが停止したことを確認しました。漏えいが確認された範囲について詳細に確認を行ったところ、滞留水処理装置を設置しているトレーラ内に約2m×約6mの範囲で漏えいした跡があり、トレーラ内からトレーラ外へ漏えいした水が溜まっていた範囲については、約3m×約3m×約1mmでした。漏えいした水の量については、漏えい時間、流量等から算定し、約0.065m³と評価しました。なお、周辺に排水溝等はないことから、海への放出はありません。また、漏えいした水を採取、分析した結果、構内散水に使用している水*と同程度の値でした。<漏えい水サンプリング結果>

セシウム 134: 検出限界値未満【検出限界値:1.6×10⁻³ [Bq/cm³]】

セシウム 137: 4.2×10⁻³ [Bq/cm³]

全ベータ:検出限界値未満【検出限界値:1.4×10⁻² [Bq/cm³]】

* 散水可能な放射能濃度:セシウム134とセシウム137の合計が1×10² [Bq/cm³] を満足すること 原因調査の結果、R O装置から構内散水用水貯留タンクへ送水するための弁の1つが「閉」状態だったため、R O装置出口配管の圧力が上昇し、安全弁が動作しました。安全弁排水が排出 先の洗浄水槽に流れましたが、洗浄水槽では受けきれずに溢水しました。構内散水用水貯留タンクへ送水するための弁の1つが「閉」状態だった要因は、当該弁近傍での作業において、意図せずに当該弁のハンドルに接触し、当該弁を閉めた可能性があるものと推定しました。また当該弁は常時開状態であったことから、R O処理装置から構内散水用水貯留タンクへ送水する際に、当該弁は開状態にあるものと思い込み、当該弁の状態については、確認していませんでした。再発防止対策として、当該弁のハンドルを取り外し、容易に操作できないようにするとともに、当該弁に注意表示を取り付ける、安全弁の排出先を洗浄水槽からR O装置の取水槽に変更することで、洗浄水槽からの溢水を回避(取水槽にすることで、排水された水は、R O装置内を循環する)、R O装置の操作手順書に通常操作しない弁についても、R O装置の系統構成時に弁の「開確認」または「閉確認」を実施するよう見直しを行います。

9月25日午後2時20分、当該RO装置の運転を再開しました。再開後の運転状態に異常はありません。

- ・ 平成25年9月25日、5,6号機非常用ガス処理系(SGTS)屋外トレンチ内水抜きおよび SGTS配管(排気ライン)の点検について、当該配管の外観目視点検を行った結果、ひび割れ変形等の破損および著しい腐食は確認されませんでした。
- ・ 平成25年9月30日午前10時20分、1号機タービン建屋地下から1号機廃棄物処理建屋へ溜まり水の移送を開始しました。

以上