資料1-4

福島第一原子力発電所1~3号機原子炉注水量低減の進捗状況について

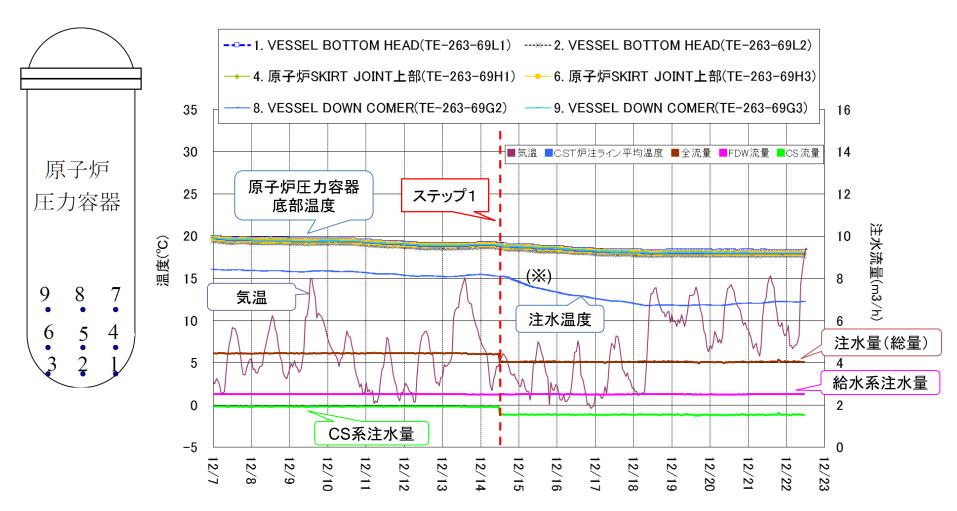
2017年1月17日

東京電力ホールディングス株式会社

汚染水処理設備の余剰分を確保する一つの手段として,原子炉注水量を低減

1号機について2016年12月から注水量低減を開始

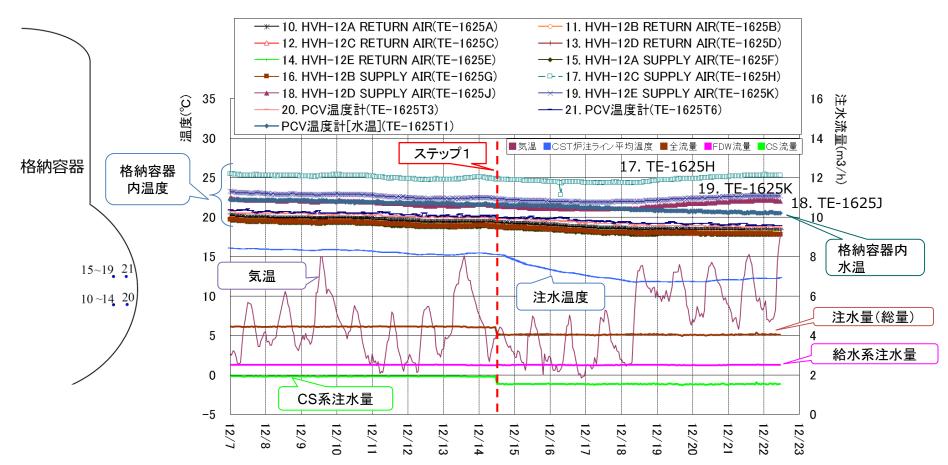
- <ステップ1> 目標注水量 4.5m³/h ⇒ 4.0m³/h 操作実績 2016年12月14日 11:35~11:57
 - ⇒ 原子炉圧力容器底部温度,格納容器内温度等のパラメータに,大きな 指示上昇はなく、冷却状態に異常なし
- <ステップ2> 目標注水量 4.0m³/h ⇒ 3.5m³/h 操作実績 2017年1月5日 10:40~10:45
 - ⇒ 原子炉圧力容器底部温度,格納容器内温度等のパラメータに,大きな 指示上昇なく,冷却状態に異常なし
- <ステップ3> 目標注水量 3.5m³/h ⇒ 3.0m³/h (2017年1月24日 予定)
- 2, 3号機については, 2月以降に順次実施予定


1号機原子炉圧力容器底部温度の推移 <ステップ1>

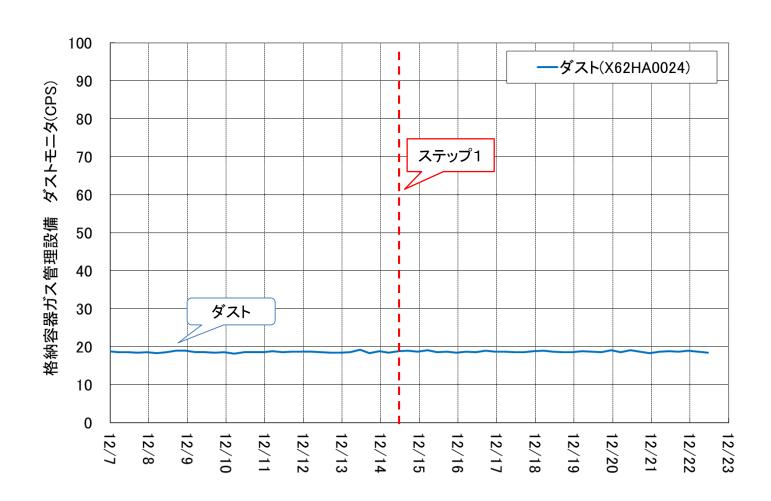
原子炉圧力容器底部温度に温度上昇はなく、冷却状態に異常なし

気温低下等に伴う注水温度の低下※が、注水量低減に伴う温度上昇よりも大きかったため、注水量低減後の原子炉圧力容器底部温度は低下したものと評価

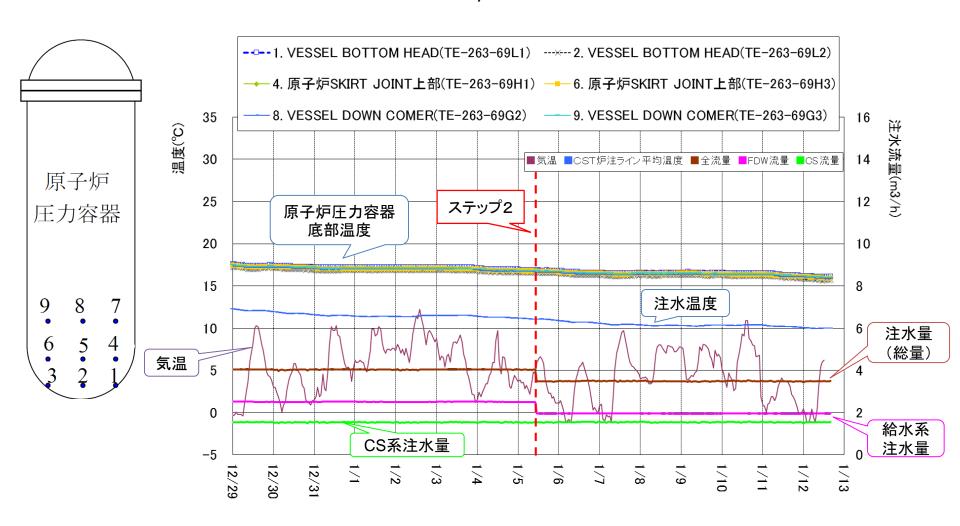
(※ 気温の変化に伴う注水温度の低下はこれまでにも実績あり)



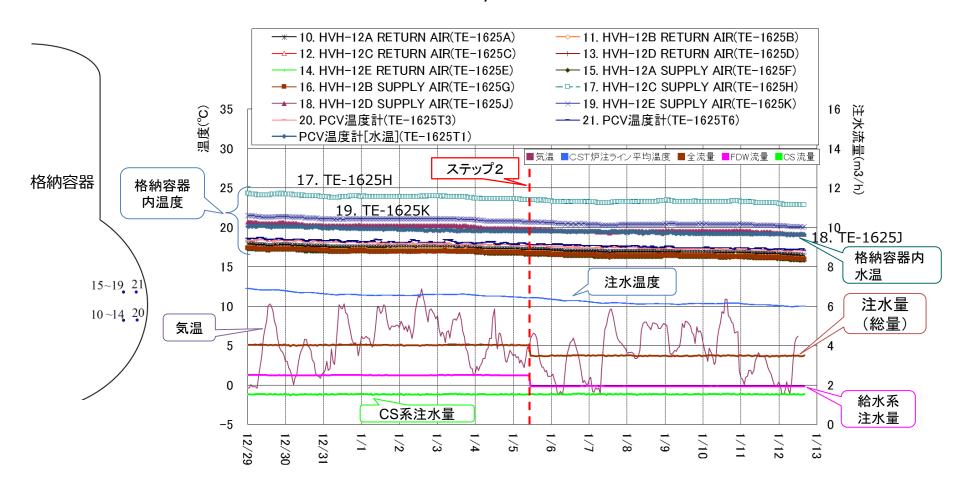
1号機 格納容器内温度の推移 <ステップ 1>


格納容器内温度に大きな温度上昇はなく,冷却状態に異常なし

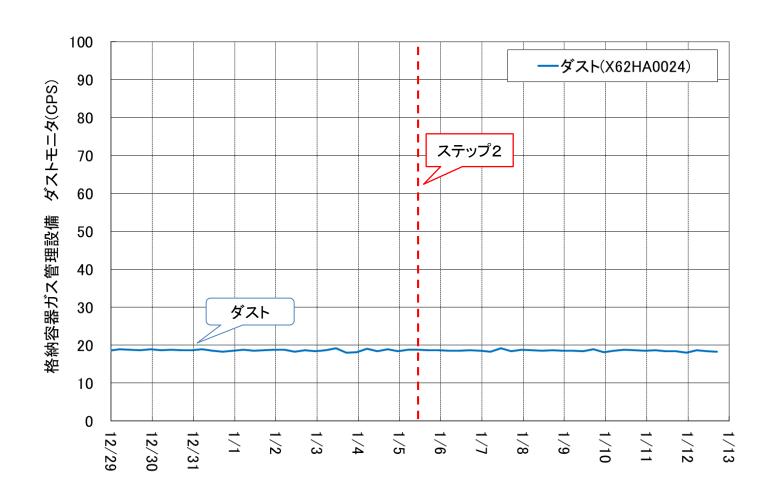
- > 大部分の格納容器内温度(TE-1625H, J, Kを除く)については,原子炉圧力容器底部温度と同様に,気温低下等に伴う注水温度の低下が,注水量低減に伴う温度上昇よりも大きかったため,注水量低減後の温度は低下したものと評価
- 一部の格納容器内温度(TE-1625H, J, K)は, 注水量低減直後は温度低下傾向であるが, 注水温度の下げ止まりとともに 上昇傾向に転じた後, 許容範囲内の温度で安定


格納容器ガス管理設備のダストモニタ指示値に上昇はなく,冷却状態に異常なし

1号機原子炉圧力容器底部温度の推移 <ステップ 2>

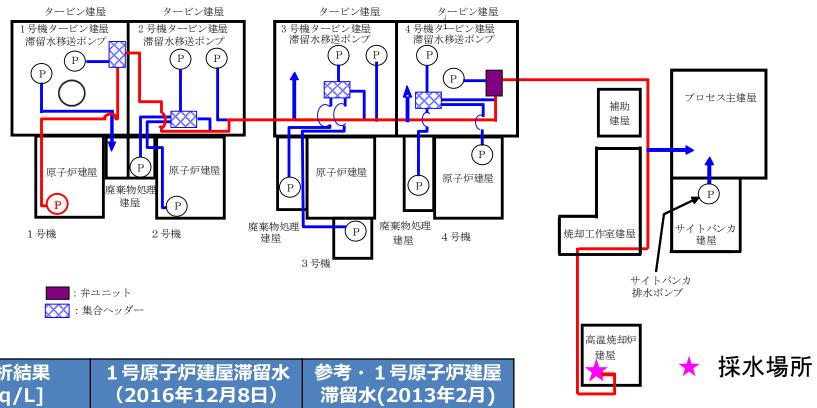

原子炉圧力容器底部温度に温度上昇なく,冷却状態に異常なし

1号機 格納容器内温度の推移 <ステップ 2>



格納容器内温度に大きな温度上昇はなく, 冷却状態に異常なし

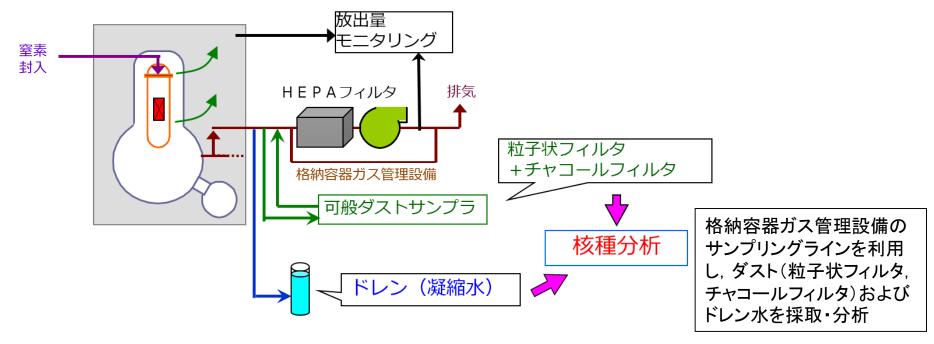
格納容器ガス管理設備のダストモニタ指示値に上昇なく,冷却状態に異常なし


注水量変更前からの温度上昇が7℃以下であり、冷却状態に異常が見られないことから 1号機についてはステップ3に移行する予定

	2016年12月	2017年1月	2017年2月	2017年3月
1号機	▼12/7 格納容器ガスサンプ ▼12/8 原子炉建屋滞留水 ステップ 1			
	▼12/14	ステップ 2 ▼1/5 ステップ ▼1/24	J	リング 時期検討中)
2 号機		サンプリング (工程調整中) ■ ■ ■		注水量低減
3号機		サンプリング (工程調整中)	注水量低減	サンプリング (実施時期検討□ ■ ■

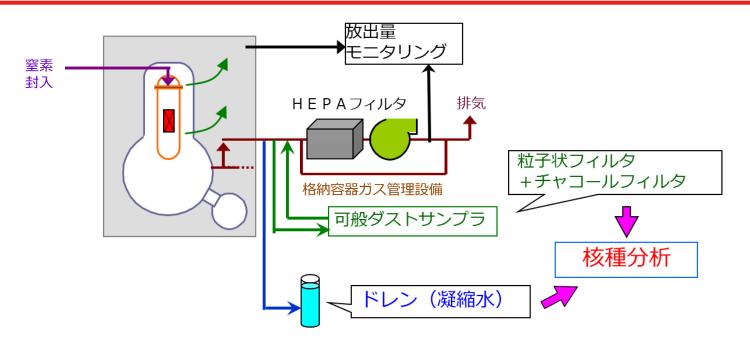
※ 注水量低減後のサンプリングについては、実施時期検討中

【参考】1号機 原子炉建屋滞留水分析結果

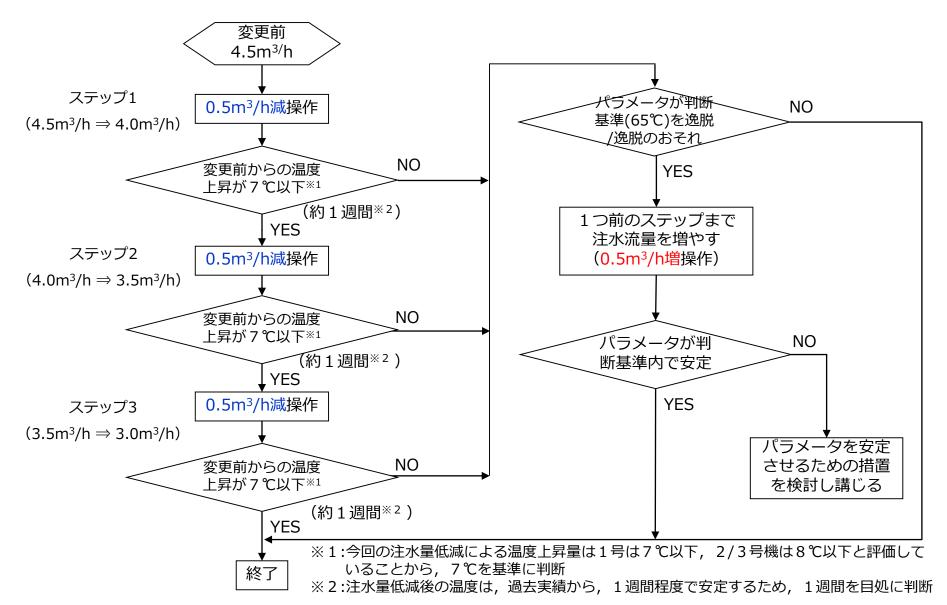


分析結果 [Bq/L]	1号原子炉建屋滞留水 (2016年12月8日)	参考・1号原子炉建屋 滞留水(2013年2月)
Cs-134	4.7E+06	7.4E+07
Cs-137	3.1E+07	1.5E+08
Sr-90	1.1E+07	5.3E+07
トリチウム	7.9E+05	2.8E+06

建屋滞留水移送設備を活用(原子炉建屋側を単独運転)し,移送先滞留水出口(高温焼却炉建屋側)で滞留水を採取・分析



分析結果 [Bq/cm³]	粒子状フィルタ	チャコール フィルタ	ドレン水
Cs-134	2.6E-05	ND(<1.4E-07)	1.8E+01
Cs-137	1.7E-04	3.3E-07	1.2E+02
Sr-90			2.7E+01
全a	2.3E-08		ND (<8.6E-03)
トリチウム			9.9E+02


2016年12月7日採取

分析結果	2013年5月10日			2013年5月13日		
[Bq/cm ³]	粒子状 フィルタ	チャコール フィルタ	ドレン水	粒子状 フィルタ	チャコール フィルタ	ドレン水
Cs-134	7.7E-5	1.2E-6	2.0E+1	6.4E-5	ND(<7.8E-7)	1.9E+1
Cs-137	1.6E-4	2.0E-6	4.3E+1	1.3E-4	ND(<7.6E-7)	4.2E+1
全a			ND (<1.0E-2)			ND (<1.0E-2)
トリチウム			1.1E+03			1.2E+03

■運用に必要な以下の余裕を確保し,目標とする注水量を設定

<温度管理の余裕>

▶温度制限(80℃)に対する余裕を確保するため,65℃以下を目標とする流量を設定

く流量管理の余裕>

▶流量の制限値を遵守するため、警報設定、流量調整等に関わる運用上の余裕を確保

⇒ 注水量の低減目標は,各号機最大で1.5m³/h減(4.5⇒3.0m³/h)

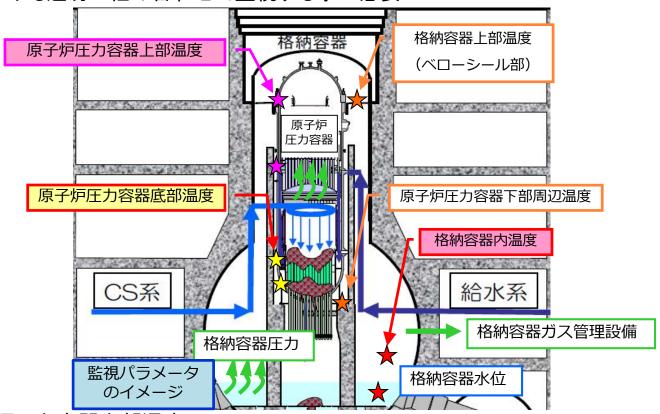
<評価結果>		1号[m³/h]	2号[m³/h]	3号[m³/h]	総量[m³/day]
注水量の目標 ^{※1} (低減量)		3.0 (1.5 減)	3.0 (1.5 減)	3.0 (1.5 減)	216 (108 減)
評	温度管理のための 注水量下限値 ^{※2}	1.7	2.0	2.1	
価	流量管理のための 注水量下限値 ^{※3}	2.6 (1.4+1.2)	3.0 (1.8+1.2)	3.0 (1.8+1.2)	

- ※1 現行の流量調整弁,流量計の調整範囲からの制御可能下限値は3.0m^{3/}h
- ※2 熱バランス評価で65℃以下となる注水量を評価
- ※3 制限値(原子炉の冷却に必要な注水量)に加え,警報設定,流量調整等に関わる運用上の余裕として1.2m³/hを考慮

注水量低減時には以下の監視を実施

<監視の考え方>

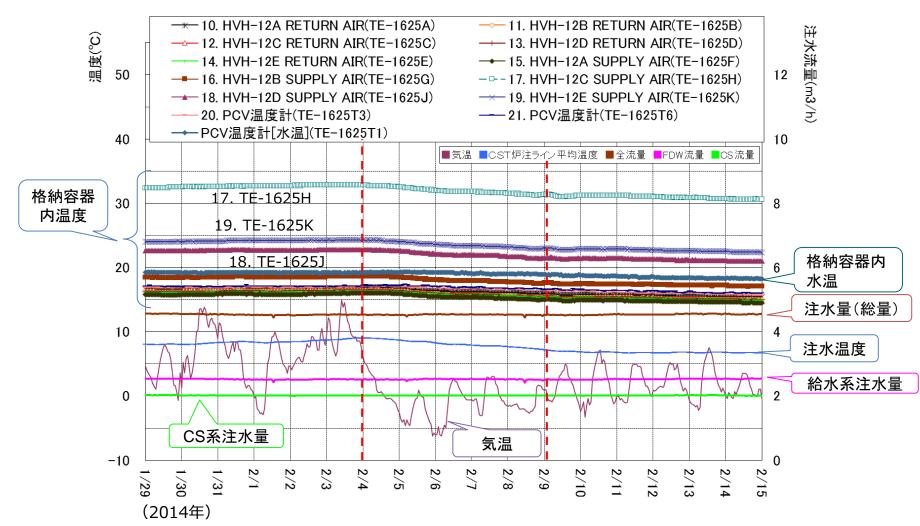
- 原子炉圧力容器内の冷却状態を確認するため、原子炉圧力容器底部温度を監視
- 格納容器内の冷却状態を確認するため、格納容器内温度を監視
- 放射性物質の異常な放出(放出量増加)がないことを確認するため、格納容器ガス管理設備のダストモニタを監視
- 注水変更操作から24時間の監視強化とし、冷却状態に異常が無い場合には、24時間以降は通常頻度での監視に移行


	監視頻度		
監視パラメータ	操作後24時間	24時間以降 (通常監視頻度)	判断基準
原子炉圧力容器底部温度	毎時	毎時	65℃以下
格納容器内温度	毎時	6 時間	65℃以下
原子炉への注水量	毎時	毎時	必要な注水量が確保されていること
格納容器ガス管理設備 ダストモニタ	6 時間	6 時間	有意な上昇が継続しないこと

注水量低減は段階的に実施し, ステップ毎に冷却状態を確認

- 原子炉圧力容器底部温度・格納容器内温度に大きな温度上昇がないこと
- 原子炉圧力容器上部温度,格納容器圧力,格納容器内水位等のプラントパラメータに異常がないこと

冷却状態の変化をより確実に把握するため、原子炉圧力容器底部温度・格納容器内温度以外の プラントパラメータも適切に組み合わせて監視する事が必要



- 原子炉圧力容器上部温度
 - ⇒原子炉圧力容器内の熱源への冷却水のかかり方が変化した場合,燃料デブリの表面温度の 上昇,対流の変化などにより,原子炉圧力容器上部にも温度影響があると考えられる
- ●格納容器ガス管理設備(ダスト)
 - ⇒冷却状態の変化により,蒸気発生量の増加などによる,放射性物質の放出量増加がないことを確認する

【参考】注水温度低下の過去実績例

気温の低下に伴い, 注水温度が低下(2014年2月4日~2月9日) 注水温度の低下に応じ, 格納容器内温度が低下(1号機 格納容器内温度データ)

