柏崎刈羽原子力発電所 第7号機

地盤の支持性能について (補足説明資料)

2020年 2月 東京電力ホールディングス株式会社

目次

	頁
1. 概要 · · · · · · · · · · · · · · · · · ·	
2. 基本方針 · · · · · · · · · · · · · · · · · · ·	• 1
3. 対象施設周辺の地質等	• 2
3.1 対象施設周辺の地質	. 2
3.2 対象施設周辺の地質分布状況の整理結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
3.3.1 対象施設周辺の地下水位分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
3.3.2 耐震評価における地下水位の設定方針	19
4. 地盤の解析用物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
4.1 設置変更許可申請書に記載された解析用物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
4.2 設置変更許可申請書に記載されていない解析用物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
4.2.1 全応力解析に用いる解析用物性値	35
4.2.2 有効応力解析に用いる解析用物性値	41
4.2.3 その他の解析用物性値	87
4.2.4 地盤の物性のばらつきについて ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
5. 極限支持力 ······	89
5.1 基礎地盤(西山層)の極限支持力度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
5.2 直接基礎の支持力算定式	93
5.3 杭基礎の支持力算定式	96
6. 地盤の速度構造	100
6.1 入力地震動の設定に用いる地下深部モデル	100
6.2 地震応答解析に用いる浅部地盤の解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	103
参考資料 1 · · · · · · · · · · · · · · · · · · ·	1 - 1
参考資料 2 (参考)	2 - 1
参考資料 3 (参考)	3 - 1
参考資料 4 (参考)	4 - 1
参考資料 5	5 - 1
参考資料 6	6 - 1
参考資料 7	7 - 1
参考資料 8 (参考)	8-1
参考資料 9	9 - 1

1. 概要

本資料は、V-2-1-1「耐震設計の基本方針」に基づき、設計基準対象施設並びに常設耐震重要 重大事故防止設備以外の常設重大事故防止設備、常設耐震重要重大事故防止設備、常設重大事故 緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設を除く。)、常設重大事故防 止設備(設計基準拡張)が設置される重大事故等対処施設(特定重大事故等対処施設を除く。)、 常設重大事故緩和設備(設計基準拡張)が設置される重大事故等対処施設(以下「常設重大事故 等対処施設」という。),及び波及的影響の設計対象とする下位クラス施設の耐震安全性評価を実 施するに当たり、対象施設を設置する地盤の物理特性、強度特性、変形特性等の地盤物性値設定 及び支持性能評価で用いる地盤諸元の基本的な考え方を示したものである。

2. 基本方針

設計基準対象施設,常設重大事故等対処施設及び波及的影響の設計対象とする下位クラス施設において,これらの対象施設を設置する地盤の物理特性,強度特性,変形特性等の解析用物性値については,各種試験に基づき設定する。また,全応力解析及び有効応力解析に用いる解析用物性値をそれぞれ設定する。全応力解析に用いる解析用物性値は,設置変更許可申請書(添付書類六)に記載した値を用いることを基本とする。有効応力解析の解析用物性値は,工事計画認可申請において新たに設定する。

対象施設を設置する地盤の地震時における支持性能評価については、設計基準対象施設及び常設重大事故等対処施設の耐震重要度分類又は施設区分に応じた地震力により地盤に作用する接地 圧が、地盤の極限支持力度に対して妥当な安全余裕を有することを確認することによって行う。

極限支持力は、建築基準法及び同施行令、建築基礎構造設計指針((社)日本建築学会、2001 改定)(以下「基礎指針」という。)及び道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会、平成14年3月)(以下「道路橋示方書I・IV」という。)の支持力算定式に基づき、対象施設の支持地盤の支持力試験又は室内試験結果より設定する。

杭基礎の押込み力及び引抜き力に対する支持力評価において,有効応力解析により液状化する と評価された地盤は杭周面摩擦力を支持力として考慮せず,支持力評価を行うことを基本とする。 ただし,杭周面地盤に地盤改良体,非液状化層,岩盤がある場合は,その杭周面摩擦力を支持力 として考慮する。

3. 対象施設周辺の地質等

3.1 対象施設周辺の地質

対象施設周辺の地質層序を表 3-1 に示す。対象施設周辺の地質は、下位から新第三系の椎谷層、新第三系鮮新統~第四系下部更新統の西山層、それらを不整合で覆う中部更新統の古安田層*、上部更新統の大湊砂層及び番神砂層、完新統の新期砂層・沖積層からなる。

対象施設周辺の地質・地質構造評価に係る地質調査のうち、ボーリング調査位置図を図 3-1 に、対象施設周辺の地質平面図を図 3-2 に、地質断面図を図 3-3~図 3-10 に示す。

対象施設周辺に分布する地層のうち、最下位の椎谷層は主に砂岩優勢な砂岩・泥岩の互層からなり、細礫岩等を挟在する。上部になるに従って泥岩が優勢な岩相となる。

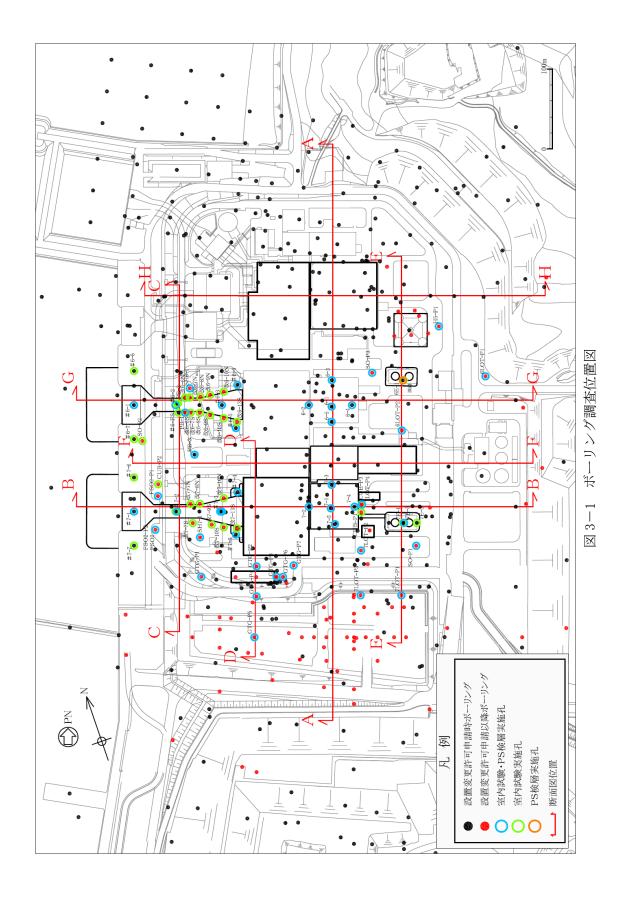
西山層は主に塊状無層理の泥岩からなり、スコリア粒、軽石粒、ノジュール、砂岩、凝灰岩、縞状泥岩等を挟在する。本層は、これらの挟み層の分布状況等によって下位から N_1 、 N_2 及び N_3 の 3 部層に区分することができ、対象施設周辺に分布するのは N_1 部層のみである。

古安田層は主に粘土~シルトからなり、砂、砂礫等を挟在する。場所により地層構成、層厚に差があるが、大局的には粗粒から細粒に変化する堆積サイクルが認められ、このサイクルによって下位から A_1 、 A_2 、 A_3 及び A_4 部層に区分することができる。各部層のうち、 A_1 部層は新第三系~下部更新統上限面の旧河谷部に分布し、砂、砂礫を挟む。 A_2 部層は砂、厚い砂礫、有機物を挟む。 A_3 部層は貝化石を含み、有機物あるいは縞状粘土を伴う。 A_4 部層は対象施設周辺には分布していないが、砂を多く挟み、最上部に厚い砂を伴う。

大湊砂層は主に分級の良い赤褐色~黄褐色を呈する中粒~粗粒砂からなり,厚さ数 mm~数 cm のシルト層を挟在する。

番神砂層は主に分級の良い灰白色を呈する塊状の中粒~粗粒砂からなり、前述した大湊砂層に比べて固結度が高い。砂粒は大部分が石英及びチャート粒からなり、何種類かの重鉱物を含んでいる。風成の葉理構造が認められ、古砂丘を形成しており、下位の大湊砂層を整合あるいは一部不整合に覆う。

新期砂層・沖積層は下位層上限面に刻まれた谷を埋めるように堆積したため、場所により層厚が大きく変化している。主に未固結の淘汰の良い細粒~中粒砂からなる。下部は灰色~茶褐色を呈し、シルトを挟在し一部腐植質となる。上部は灰白色~茶褐色の細粒~中粒砂からなる。


対象施設周辺の第四系の主な層相及び代表的なコア写真の拡大を表 3-2 に示す。以降, 対象施設周辺の第四系をこの層相に基づき区分する。

注記* : 本資料では、安田層下部層の MIS10~MIS7 と MIS6 の境界付近の堆積物を、『古安田層』と仮称する。

表 3-1 対象施設周辺の地質層序

	時	代	坩	也 層 名	*1 地質区分〔略称〕		主な層相・岩質	*2 テフラ・放射年代		
					新期砂層	砂	灰白色~茶褐色の細~中粒砂			
	完	新世	新期	砂層・沖積層	沖積層上部	シルト~砂	が日色〜茶椅色の神〜中私的 シルト層を挟在 一部は腐植質			
			*3	^^^^	沖積層下部	砂	一部は腐惟貝	← 腐植		
		40 Hu	番神砂層		番神砂層•	灰白色~	赤褐色の中~粗粒砂	(9,910±30年前)		
第		後期			大湊砂層		褐色の中〜粗粒砂, 薄層を含む	_		
			~~~		A3c層 [A3c]	シルト	粘土~シルト	→ 刈羽テフラ (約20万年前)		
四	更			A₃部層	A3al層〔A3al〕	砂・シルト互層	縞状粘土,有機物,砂を伴う 貝化石を含む			
					A3s層 〔A3s〕	砂	只11.47 で A C			
紀	新		* ⁴ 古		A2c層 〔A2c〕	シルト		◆ Ata-Th (約24万年前)		
/\L	##:	中期	安田層	安田		A2al層〔A2al〕	砂・シルト互層	粘土~シルト		
		中期			A2部層	A2s層 〔A2s〕	砂	や、厚い砂礫、有機物を挟む		
						_			A2g層 〔A2g〕	シルト質砂礫 ~砂礫
					A1c層 〔A1c〕	シルト	粘土~シルト	<b>←</b> Kkt (約33~34万年前)		
				A:部層	A1g層 [A1g]	シルト質砂礫 ~砂礫	砂、砂礫を挟む	(約33~34万年前)		
新第	鮮新	後期	西山層	Nı部層	西山層	砂岩,凝	〜粘土質泥岩 灰岩,ノジュールを挟む 比石を含む	→ Nt-17 (340±20万年前) → Nt-7		
三	世	前期	'			~L 52 144/NI	Nore C H O	(350±20万年前)		
紀	中新世	後期	Ħ	惟 谷 層	椎谷層 砂岩、砂岩・泥岩互層、細礫岩等					

注記*1 : 同表の地質区分は、地質調査の結果を踏まえ、設置変更許可段階の地層名から層相毎に区分したものを示している。
*2 : テフラの名称・年代は、岸ほか (1996) などによる。
*3 : ^^ 不整合
*4 : 安田層下部層のMTS10~MTS7とMTS6の境界付近の堆積物に対する仮称。
MTS: 海洋酸素同位体ステージ (Marine oxygen Isotope Stage)



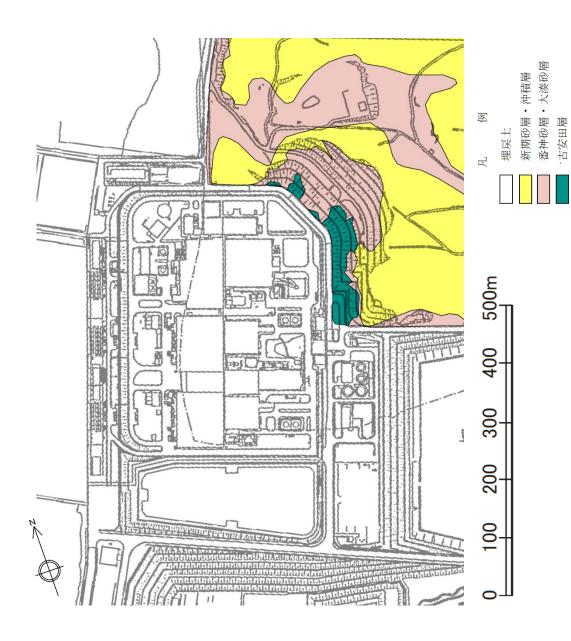
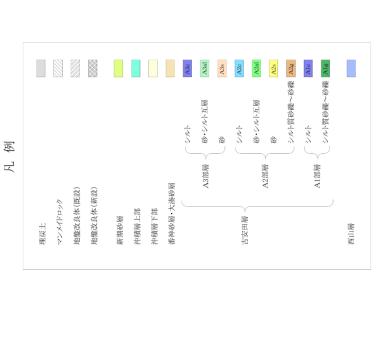




図3-2 地質平面図



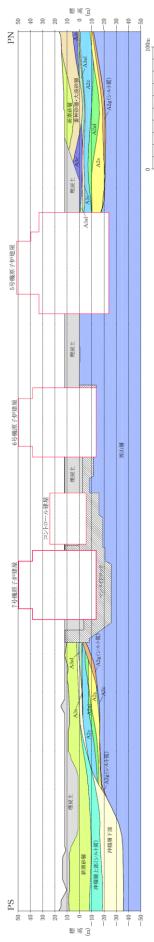
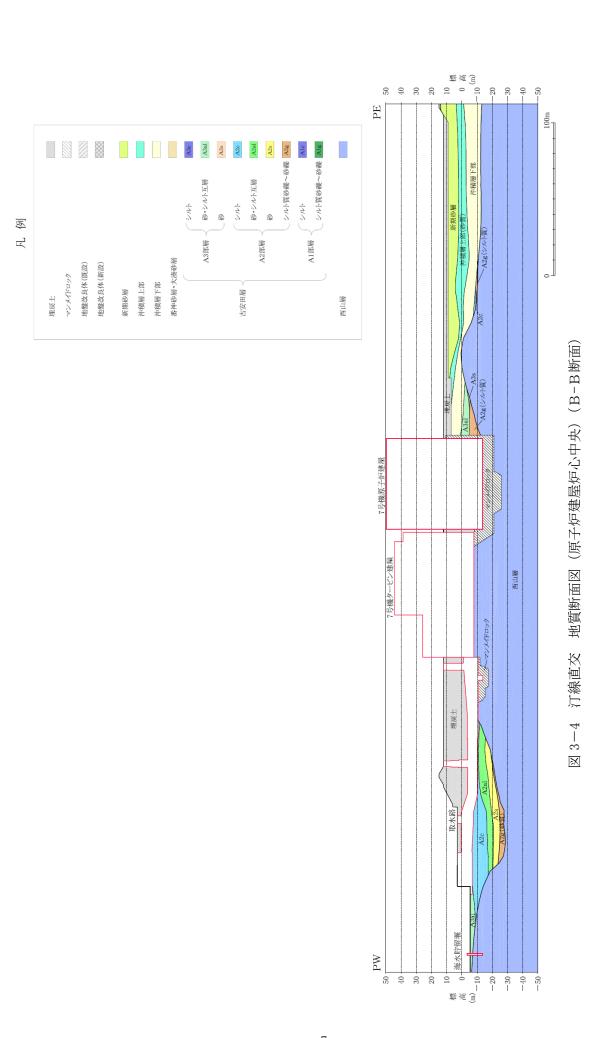




図3-3 汀線平行 地質断面図 (原子炉建屋炉心中央) (A-A断面)



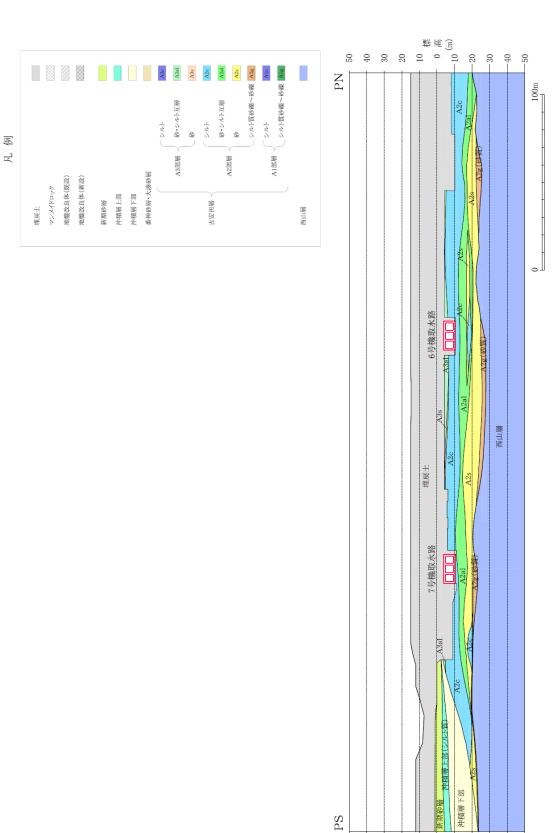
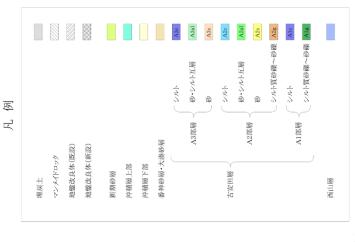
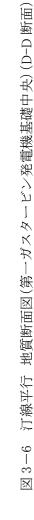
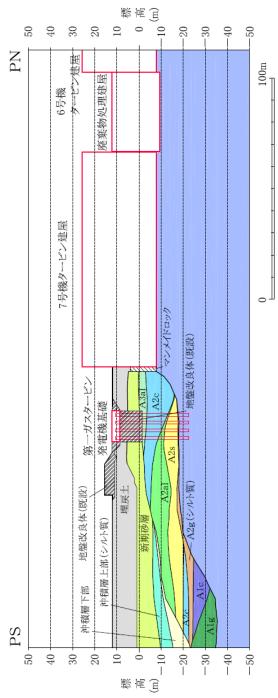
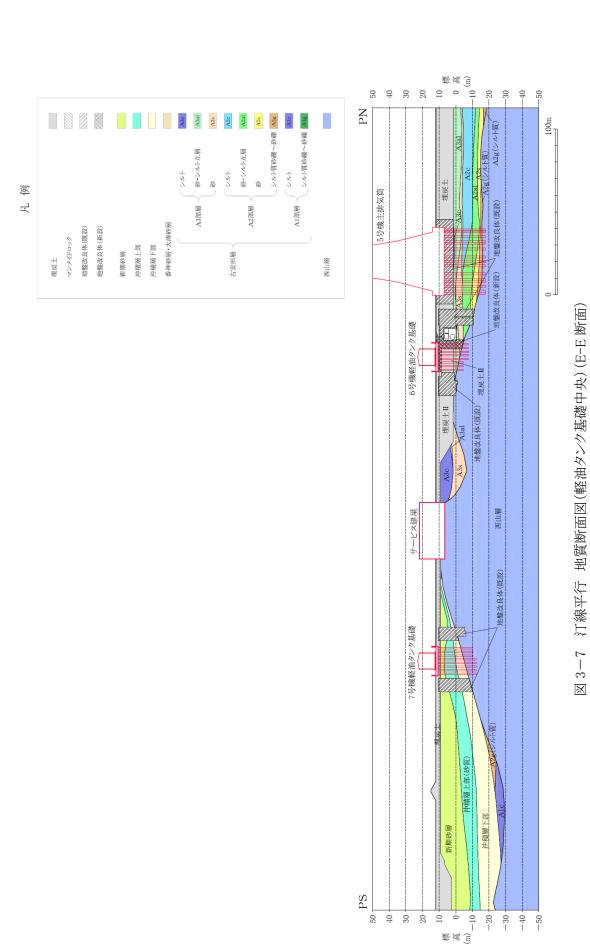


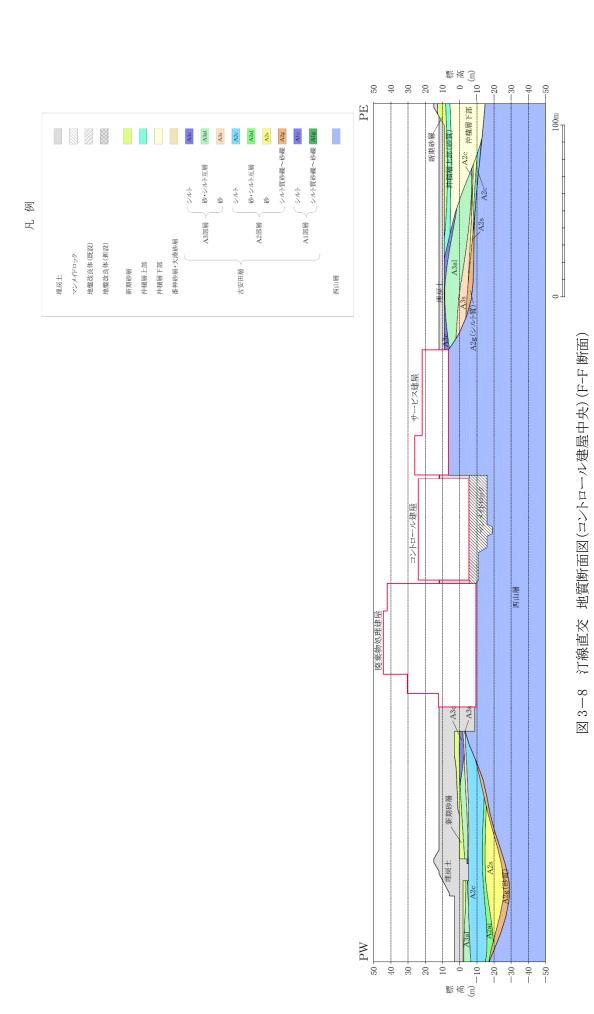

図3-5 汀線平行 地質断面図(6·7 号機取水路一般部)(C-C 断面)


-20 -30 -40 -50


20


10


20


8











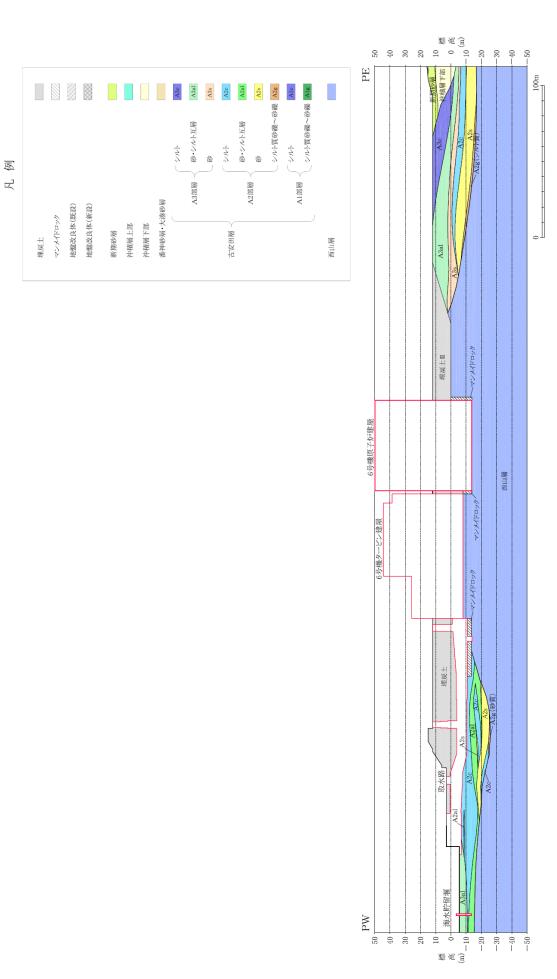



図3-9 汀線直交 地質断面図(6号機原子炉建屋炉心中央)(G-G断面)

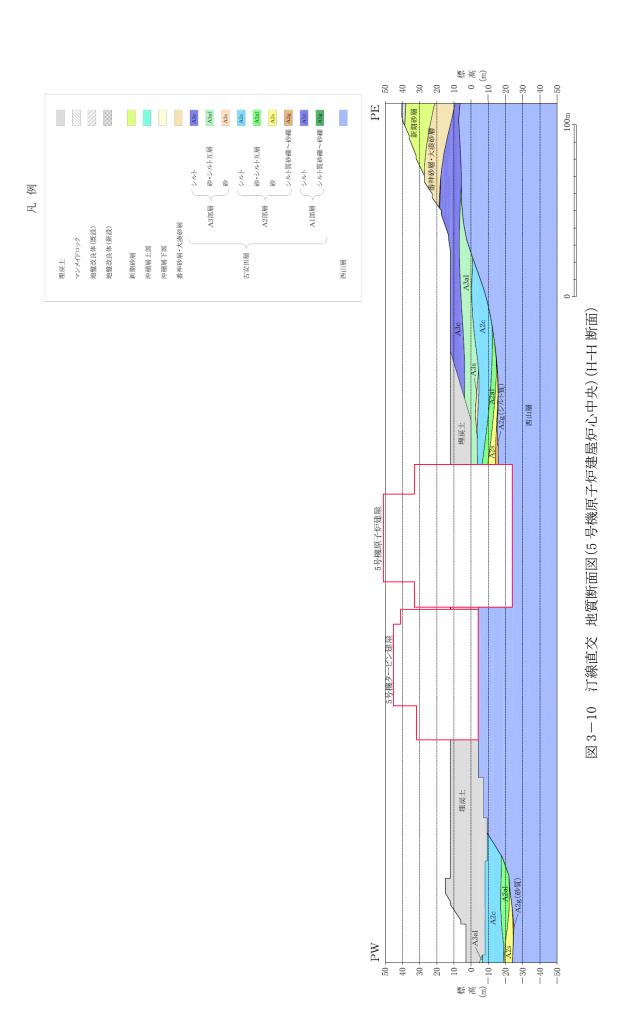



表 3-2 第四系の主な層相

時	代	ŧ	也層名	地質区分		主な層相	代表的なコア写真											
				新期砂層	砂													
	完新	新	期砂層	<b>油建屋上如</b>	シルト	灰白~茶褐色の 細~中粒砂。												
	世	• }	沖積層	沖積層上部	砂	シルト層を挟在。 一部は腐植質。	NO MONEY PROPERTY											
				沖積層下部	砂		The second second											
		番	神砂層	番神砂層・	砂	灰白~赤褐色の 中~粗粒砂。	・ は 利力の方の (本)											
		大	湊砂層	大湊砂層	砂	褐〜黄褐色の 中〜粗粒砂。	1. 并分别的数据 T. A. S. S.											
				A3c層	シルト	粘土~シルト。												
第四			A3部層	A3a1層	砂・シルト 互層	縞状粘土,有機物, 砂を伴う。	(日本の本語の)											
紀				A3s層	砂	貝化石を含む。												
	更新		A2部層	A2部層	A2部層	A2部層	A2部層	A2部層	A2c層	シルト								
	世	古安							- A2部層	- A2部層	- A2部層	A2部層	_ A2部層	 A2部層	A2a1層	砂・シルト 互層	ルト	de la representation de la rep
		田層													A2s層	砂		
				A2g層	シルト質 砂礫	1740	E IN DAZA											
				AZS/管	砂礫													
			A 1 並区	A1c層	シルト	粘土~シルト。	Marie											
			A1部層 -	A1g層	シル質砂礫 ~砂礫	砂、砂礫を挟む。	于人类为一											

## 3.2 対象施設周辺の地質分布状況の整理結果

対象施設の全体配置図を図 3-11 に示す。「3.1 対象施設周辺の地質」において作成した地質断面図より,各対象施設周辺の地質分布状況を整理した結果を表 3-3 に示す。なお,ここに示す地質区分は,地質調査及び粒度試験などの室内試験の結果に基づき,地質学的見地・工学的見地から表 3-1 の地質層序より細分化したものを示している。地質区分の細分化についての詳細は,後述する 4.2.2(2)に記す。

これらの地質に対し、図 3-1 に示すような広範囲における調査結果等に基づき解析用物性値を設定した。

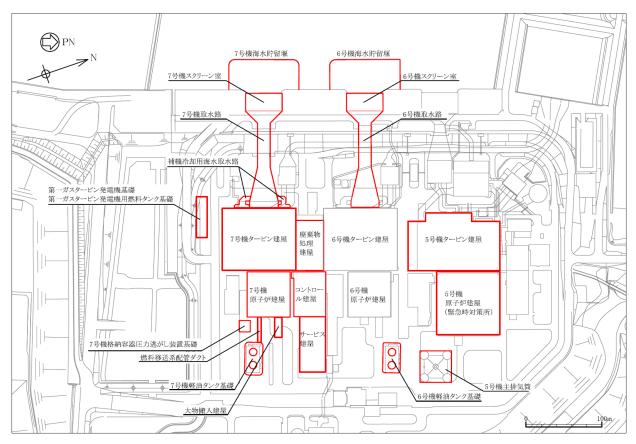
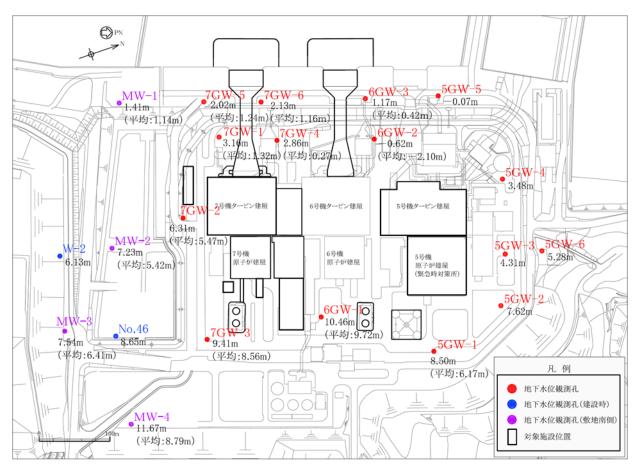



図 3-11 対象施設の全体配置図

表 3-3 対象施設周辺の地質分布一覧

	・6・7号機 軽油・ペンク基礎 ・然早後送系配・ 株子を送る ドビックト ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	•	•	•	I	•	•	I	•	•	•	•	•	•	•	0	0	I	•	•	•	•
土木構造物	・6・7号機 スク リーン室 ・6・7号機 取水 路 ・補機冷却用海 水取水路	•	ı	•	•	0	•	ı	•	•	•	•	•	•	0	•	Ι	I	•	•	•	•
#	・ ボン 発 ー ガス ・ 第 ー ガス ・ 第 ー ガス ドン 発 電 機 ボッケン か 離長	•	I	•	•	I	•	I	I	•	•	•	•	•	•	0	0	0	•	•	0	•
	· 6 · 7 号機 海水   貯留堰	0	I	0	0	0	0	I	I	•	I	•	•	0	I	0	ı	I	•	•	I	0
	・5号機主排気筒	•	•	0	I	0	0	0	•	•	•	•	•	•	•	0	0	I	•	•	I	•
	・5号機タービン 雄扇	•	I	0	0	I	0	•	•	•	•	•	•	•	•	0	I	0	•	•	•	I
=	·緊急時対策所 (5号機原子炉建 處內緊急時対策 所)	•	ı	•	0	0	0	•	•	•	•	•	•	•	•	0	1	I	•	•	ı	ı
	<ul><li>・格納容器圧力 逃がし装置基礎</li></ul>	•	ı	•	0	•	•	ı	0	•	•	•	•	0	•	0	0	ı	•	•	•	•
(1) イン・ロー・ には、 は、 は	<ul><li>廃棄物処理建 屋</li></ul>	•	ı	•	0	0	0	0	•	•	•	•	•	•	0	•	1	0	•	•	•	ı
建物・	・サービス建園	•	0	•	I	•	•	ı	•	•	•	•	0	•	•	0	0	I	•	•	•	ı
ζ	・コントロール発展	•	ı	•	0	•	•	0	•	•	•	0	0	0	0	0	1	ı	•	•	•	1
	・大物搬入建屋	•	ı	•	ı	•	•	ı	0	•	•	•	0	0	•	0	0	l	•	•	•	•
	・ ターピン建屋	•	I	•	•	0	•	0	•	•	•	•	•	•	•	•	0	0	•	•	•	I
	・原子炉進屋	•	I	•	•	0	•	0	•	•	•	•	•	•	•	0	I	I	•	•	•	I
<b>公</b>	Al Southern	埋戻土	埋戻土II	新期砂層	シルト質	の 動	<b>沖積層下部</b>	湊砂層	A3c/層	A3a1)層	A3s/隆	A2c層	A2a1層	A2s層	ツルト質	多面	Alc層	Alg層			4	
			#/	- সাং	•	子街画上等	走	番神砂層·大湊砂層							6	AZg/層			屋川屋	椎谷層	マンメイドロック	地盤改良体
	時代・地圏名	10	理灰工		新期砂層	・沖積層		- 本在					1	中女田畑							6	
$\angle$	盐									:	終回犯	2							兼	111 扉		

凡例


^{● :} 施設直下あるいは直近に分布している地質○ : 施設直下及び直近には分布していないが、地質断面図内(図3-3~図3-10)に現れる地質一 : 施設直下及び直近には分布しておらず、地質断面図内(図3-3~図3-10)にも現れない地質

## 3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針

#### 3.3.1 対象施設周辺の地下水位分布

敷地の地下水位分布を把握するため、対象施設近傍に地下水位観測孔を設置し、地下水位の連続観測を実施した。図 3-12 に観測最高地下水位分布図、表 3-4 に観測最高地下水位一覧表を示す。なお、図 3-12 には、参考として建設時に敷地に設置されていた地下水位観測孔(No. 46 孔及び W-2 孔)についても示す。

各地点における地下水位観測データは(参考資料1)に示す。



注1: 図中の数値は、各地下水位観測孔の観測最高地下水位の標高(T.M.S.L.)を示す。

注2: 図中の() 内の数値は、敷地内観測孔において通年の観測記録が得られている各地下水位観測孔の2018年の年間平均水位を示す(該当期間の記録がない観測孔は()記載なし)。

図 3-12 観測最高地下水位分布図

表 3-4 観測最高地下水位一覧表

観測孔名	計測期間	観測地下水位 T. M. S. L. (m)		観測最高地下水位 計測時期	備考
7GW-1	2018年1月~2019年11月	最高 平均	3. 16 1. 32	2018年2月17日	
7GW-2	2018年1月~2019年11月	最高 平均	6. 31 5. 47	2018年3月1日	
7GW-3	2018年1月~2019年11月	最高 平均	9. 41 8. 56	2018年2月17日	
7GW-4	2018年2月~2019年11月	最高 平均	2.86 0.27	2018年2月23日	
7GW-5	2018年3月~2019年11月	最高 平均	2. 02 1. 24	2018年3月9日	
7GW-6	2018年3月~2019年11月	最高 平均	2. 13 1. 16	2019年2月4日	
6GW-1	2018年2月~2019年11月	最高 平均	10.46	2018年12月27日	
6GW-2	2018年3月~2019年11月	最高平均	-0. 62 -2. 10	2018年3月6日	
6GW-3	2018年3月~2019年11月	最高平均	1. 17	2018年3月13日	
5GW-1	2018年3月~2019年11月	最高平均	8. 50 6. 17	2019年2月6日	
5GW-2	2019年2月~2019年11月	最高 平均	7. 62 —	2019年9月5日	
5GW-3	2019年2月~2019年11月	最高 平均	4.31	2019年2月20日	
5GW-4	2019年2月~2019年11月	最高 平均	3.48	2019年2月25日	
5GW-5	2019年2月~2019年11月	最高 平均	-0. 07 —	2019年2月16日	
5GW-6	2019年2月~2019年11月	最高 平均	5. 28 —	2019年2月13日	
MW-1	2018年5月~2019年11月	最高 平均	1.41 1.14	2019年12月21日	
MW-2	2014年10月~2015年5月 2018年5月~2019年11月	最高 平均	7. 23 5. 42	2015年1月21日	
MW-3	2017年7月~2018年2月 2018年4月~2019年11月	最高 平均	7. 54 6. 41	2018年2月4日	
MW-4	2014年1月~2015年5月 2018年4月~2019年11月	最高平均	11. 67 8. 79	2015年1月9日	
No. 46	1988年4月~1995年3月*	最高平均	8.65	1994年2月21日	建設時観測孔
W-2	1988年4月~1995年3月*	最高 平均	6. 13 —	1994年3月2日	建設時観測孔

注: 平均水位は敷地内観測孔において通年の観測記録が得られている 2018 年の年間平均水位を示す (該当期間の記録がない観測孔は "-"で示す)。

注記* :6号機本館基礎開始前後の計測期間(1988年4月~1995年3月)の記録を抜粋

#### 3.3.2 耐震評価における地下水位の設定方針

#### (1) 基本方針

耐震評価における地下水位の設定方針の設定フローを図 3-13 に示す。

対象施設が地下水排水設備に囲まれている場合は、地下水排水設備による地下水低下を 考慮して耐震評価における地下水位を設定する。

対象施設が地下水排水設備の外側に配置される場合は、地下水位観測記録、地質構造、若しくは潮位に基づき地下水位の検討を行い、現況の地下水位を上昇させる要因の有無、観測記録における地下水位の変動要因(自然要因・人為的要因)を考慮し、耐震評価における地下水位を設定する。

また、耐震評価における地下水位を設定した後に、地下水位を上昇させる事象が発生した場合は、地下水位設定の再検討を行う。

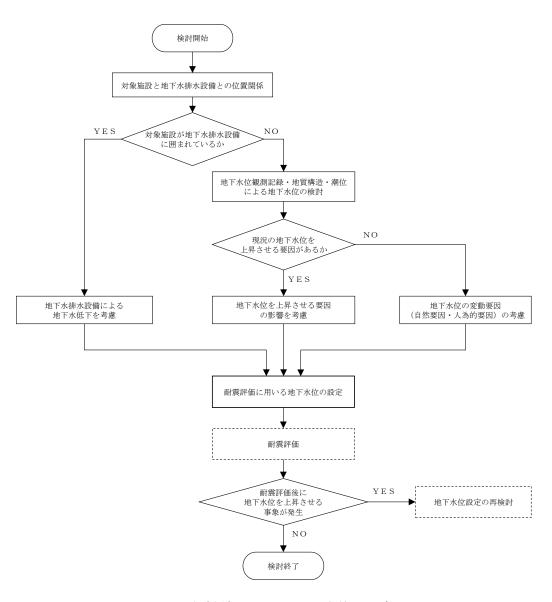



図 3-13 耐震評価における地下水位の設定フロー

### (2) 耐震評価における地下水位

前述(1)の基本方針に基づき、建物・構築物及び土木構造物の耐震評価における地下水位を下記のとおりに設定する。耐震評価における地下水位設定の詳細は(参考資料1)に示す。

## a. 建物·構築物

地下水排水設備に囲まれている原子炉建屋、タービン建屋、コントロール建屋、廃棄物処理建屋及び緊急時対策所(5号機原子炉建屋内緊急時対策所)(以下、「緊急時対策所」という。)の地下水位については、地下水排水設備による地下水低下を考慮し、基礎スラブ上端レベルに設定する。

地下水排水設備に囲まれていない大物搬入建屋,格納容器圧力逃がし装置基礎,5号機 主排気筒については,近傍に設置した地下水位観測孔の観測記録に基づき,保守的に観測最高地下水位以浅となるように地下水位を設定する。地下水排水設備に囲まれていない建物・構築物の地下水位の設定一覧を表3-5に示す。

表 3-5 地下水排水設備に囲まれていない建物・構築物の耐震設計における地下水位の設定一覧

建物・構築物	観測最高地下水位	耐震評価における
建物・博業物	(近傍観測孔)	地下水位
大物搬入建屋	T. M. S. L. 9.41m	T. M. S. L. 12.0m
格納容器圧力逃がし装置基礎	(7GW-3)	(地表面)
5 号機 主排気筒	T. M. S. L. 8.50m	T. M. S. L. 12.0m
5万機 土併风同	(5GW-1)	(地表面)

## b. 土木構造物

土木構造物は、全ての施設が地下水排水設備の外側に配置されていることから、土木構造物の近傍に設置した地下水位観測孔の観測記録に基づき、保守的に観測最高地下水位以浅となるように地下水位を設定する。なお、耐震評価における地下水位は、既工事計画書*における設計地下水位よりも高い標高に設定されている。

各土木構造物の地下水位の設定一覧を表3-5に示す。

表 3-5 土木構造物の耐震設計における地下水位の設定一覧

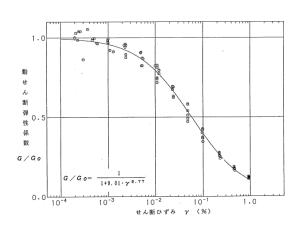
土木構造物	既工事計画書*の	観測最高地下水位	耐震評価における
上个悔垣物	設計地下水位	(近傍観測孔)	地下水位
6,7号機 海水貯留堰(護岸部)	_	T. M. S. L. 2.13m	T.M.S.L. 3.0m
6,7 号機 スクリーン室	T. M. S. L. 1.0m	(7GW-6)	(地表面)
6,7 号機 取水路 補機冷却用海水取水路	T. M. S. L. 1. 0m	T.M.S.L. 3.16m (7GW-1)	T. M. S. L. 5.0m
第一ガスタービン発電機基礎 第一ガスタービン発電機用燃料タ ンク基礎	_	T.M.S.L. 6.31m (7GW-2)	T. M. S. L. 8.0m
6,7 号機 軽油タンク基礎	T. M. S. L. 7.0m		
燃料移送系配管ダクト 非常用ディーゼル発電設備燃料移 送ポンプ防護板	_	T. M. S. L. 10.46m (6GW-1)	T.M.S.L. 12.0m (地表面)

注記* :総文発官3第167号 平成3年5月17日付け 柏崎刈羽原子力発電所第7号機『工事 計画認可申請書』

## 4. 地盤の解析用物性値

4.1 設置変更許可申請書に記載された解析用物性値

設置変更許可申請書に記載された解析用物性値を表 4-1, 図 4-1~図 4-6, 設定根拠を表 4-2 に示す。設置変更許可申請書に記載された解析用物性値については,原位置試験及び室内試験から得られた各種物性値を基に設定した。


表 4-1 設置変更許可申請書に記載された解析用物性値

		地質区分	1 5		1	1		トメント	マンメイドロック
猴	物性値		埋戾工	新 期 妙 層 • 沖 積 層	<b>占</b> 女 出 僧	四口層	椎谷増	原子炉建屋	コントロール建屋下
	物理特性	密度 ρ (g/cm³)	1.89	1.64	1.76	1.69-0.00048 • Z	1. 94-0. 00044 • Z	1.75	1.75
	静的	变形係数 E ₀ (N/mm²)	58.8	19.3+187 · P	126+232 • P	502-2. 29 • Z	251-3.88 · Z	1160	1020
	変形特性	静ポアソン比	0.33	0.33	0.49	0.48+0.00024 · Z	0.46	0.44	0. 45
終別		初期動せん断弾性係数 G ₀ (N/mm²)	27.0	25.3	175	394-1.63 • Z	-133-7.35 • Z	2110	1990
李 性	星	動ポアソン比 v d	0.41	0.36	0.45	0.45+0.00015 · Z	0. 47+0.00031 • Z	0.36	0.36
	変形特性	動せん断弾性係数の ひずみ依存性 G/G ₀ ~ y	$1/(1+9.01 \gamma^{0.77})$	$1/(1+10.95 \gamma^{0.81})$	$1/(1+5.39  \gamma^{0.77})$	$1/(1+4.10  y^{1.37})$	$1/(1+5.76 \gamma^{0.69})$	$1/(1+4.30 \gamma^{1.00})$	$1/(1+4.30 \text{ y}^{1.00})$
		減衰定数のひずみ依存特性 h~ッ	$\gamma$ / (0. 034 $\gamma$ + 0. 003) + 0. 1	$\gamma / (0.031 \gamma + 0.002)$	24.8 y ^{0.56}	$25.0  \gamma^{0.94} + 0.7$	$\gamma$ / (0.065 $\gamma$ +0.004)+0.7	19,0 y ^{0,60}	19.0 $\gamma$ $^{0.60}$
		$C_{\mathrm{u}}$ $(\mathrm{N/mm}^2)$	ı	ı	0.238+0.407 • P	1.37-0.00504 · Z	0.721-0.00773·Z	1.84	1.84
強度	ピーク強度	( _ο )	ı	-	0	0	0	0	0
华 祖		$\sigma_{\rm t}$ (N/mm ² )	1	-	-	0.335-0.00157 · Z	1	0.666	0.666
	残留強度	C _{ur} (N/mm ² )	I	I	0.224+0.312 · P	0.673-0.00201 · Z	0.799-0.00607 · Z	1.38	1. 38

注1: Zは, T.M.S.L (m)を示す。 注2: Pは, 平均有効拘束圧(N/mm³)を示す。 注3: yは, せん断ひずみ (%) を示す。

表 4-2 設置変更許可申請書に記載された解析用物性値の設定根拠

	敖				数 形	特性				強度特性	1
	物性值	物理特性	静的	変形特性		動的	<b>茨形特性</b>		# 4 4	アーク選及	残留強度
	地質区分	密度	変形係数	静ポアソン比	初期動せん断弾性係数	動ポアソン比	動せん断弾性係数の ひずみ依存性	減衰定数の ひずみ依存特性	C	Ø t	Cur
\(\frac{\partial}{\partial}\) \(\fr	埋戻土				弾性波速度測定試験 「岩石試料の速度測定 S波速度, 密!	弾性波速度測定試験(物理探鎖 「岩石試料の速度測定要綱」に P波速度、S波速度により				I	
	新期砂層・沖積層				単性波速度測定試験(物理探索技術協会編  岩石試料の速度測定要線]に準拠)による  S波速度,密度により算定	弾性波速度測定試験(物理探鉱技術協会編 「岩石試料の速度測定要綱]に準拠)による P改速度,S改速度により算定				I	
ナヨーニー	古安田層	密度試驗結果	三軸圧縮試験結		PS検層(土質	PS検層(土質			三軸圧縮試験結	I	三軸圧縮試験結
以巨久大町で午時音で記載の4017件71万仞1467以たびが	屋川屋	密度試驗結果(土質工学会編「土質試験法」(2準拠)	三軸圧縮試驗結果(土質工学会編「土質試驗法」に準拠)	三軸圧縮試験結果	(土質工学会編「土質調査法」に準拠)による S波速度, 密度により算定	(土質工学会編「土質調査法」に準拠) による P波速度, S波速度により算定	動的単純せん断試験結果	動的単純せん断試験結果	三軸圧縮試驗結果(土質工学会編「土質試験法」に準拠)	圧裂引張強度試験 (JISM 0303に準拠)	三軸圧縮試験結果(土質工学会編「土質試験法」に準拠)
X /E/1x 1xe	椎谷層	き」(こ準拠)	き法」に準拠)		<b>≜拠)による</b>	<b>も拠)による</b>			き法」に準拠)	ı	き法」に準拠)
	マンメイドロック				<ul><li>単性故速度測定試験(物理探鉱技術協会編 「岩石試料の速度測定要編」に準拠)による S波速度、密度により算定</li></ul>	弾性液速度測定試験(物理探鉱技術協会編 「岩石試料の速度測定要綱」に準拠)による P液速度、8波速度により算定				圧裂引張強度試験 (JISM 0303/ご準拠)	
			l .	l .	ı	ı		l .	l .	1	



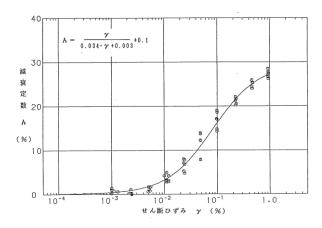
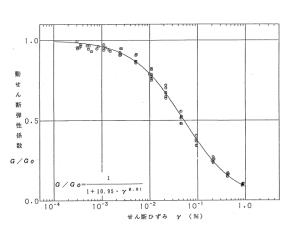




図 4-1 埋戻土の動せん断弾性係数及び減衰定数のひずみ依存特性



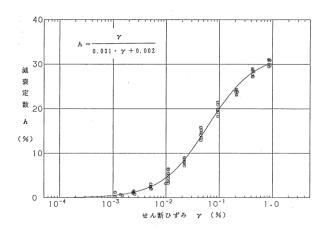
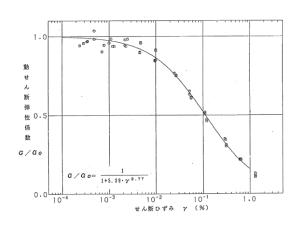




図 4-2 新期砂層・沖積層の動せん断弾性係数及び減衰定数のひずみ依存特性



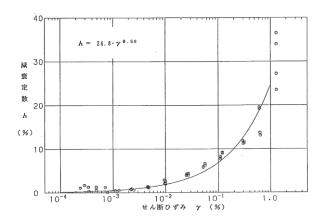



図 4-3 古安田層の動せん断弾性係数及び減衰定数のひずみ依存特性

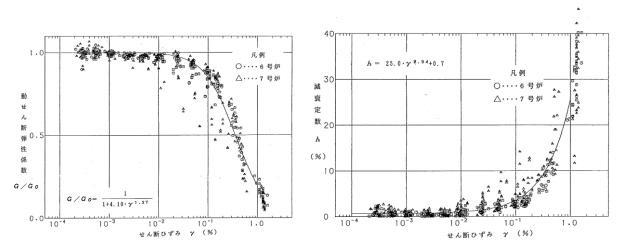



図 4-4 西山層の動せん断弾性係数及び減衰定数のひずみ依存特性

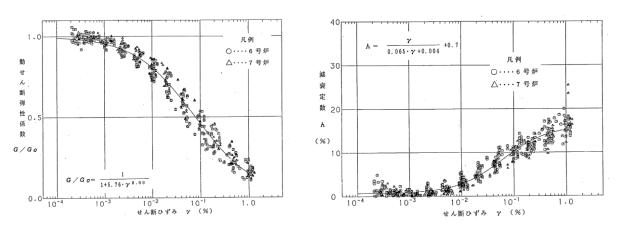



図 4-5 椎谷層の動せん断弾性係数及び減衰定数のひずみ依存特性

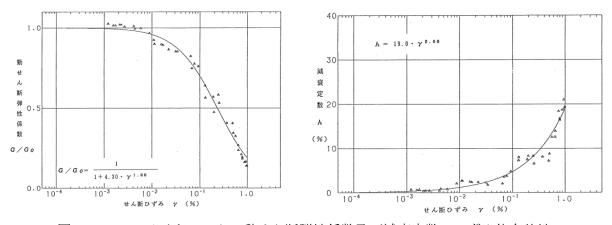



図 4-6 マンメイドロックの動せん断弾性係数及び減衰定数のひずみ依存特性

## 4.2 設置変更許可申請書に記載されていない解析用物性値

設置変更許可申請書に記載されていない解析用物性値を表 4-3~表 4-8 に,その設定根拠を表 4-10~表 4-15 に示す。以下の章に,各物性値の設定根拠を示す。

(用語)

・液状化検討対象層 : 地震時における地盤の有効応力の変化に応じた影響を考慮す

る必要のある地層

・非液状化検討対象層 : 地震時における地盤の有効応力の変化に応じた影響を考慮す

る必要のない地層

・既設地盤改良体 : 施工済みの地盤改良体

・新設地盤改良体:施工中もしくは今後施工を計画している地盤改良体

表 4-3 設置変更許可申請書に記載されていない解析用物性値(液状化検討対象層)

		地質	区分		新	期砂層・沖積	晉		古安	田層	
	物性値	_		埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層
物理	密度	ρ	$(g/cm^3)$	1. 94 (1. 79)*	2. 05 (2. 00)*	1. 90	2.02	1.91	1. 91	1. 91	1. 91
特性	間隙率	n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数	G ma	$(kN/m^2)$	$1.04 \times 10^{5}$	1. $26 \times 10^5$	$1.25 \times 10^{5}$	$1.92 \times 10^{5}$	$2.14 \times 10^5$	$2.14 \times 10^5$	$2.14 \times 10^5$	$2.14 \times 10^5$
変形	基準平均有効拘束圧 (	σ _{ma} ,	$(kN/m^2)$	98. 0	98. 0	110.0	150.0	200.0	200. 0	200.0	200.0
特性	ポアソン比	ν		0.33 (0.42)*	0.33 (0.44)*	0. 33	0.33	0. 33	0.33	0.33	0.33
	減衰定数の上限値 1	h max		0. 225	0. 234	0. 247	0. 211	0. 157	0. 157	0. 157	0. 157
強度特	粘着力	с'	$(kN/m^2)$	0. 0 (9. 6)*	0. 0 (94. 4)*	0.0	0.0	0.0	0.0	0.0	0.0
特 性	内部摩擦角	φ'	(°)	35. 9 (34. 8)*	34. 6 (27. 6)*	36. 7	35. 6	36. 6	36. 6	36. 6	36. 6
	変相角	$\phi_{\mathrm{p}}$	(° )	32.0	31.0	33. 0	32.0	32. 0	32. 0	32. 0	32. 0
			S ₁	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化			w1	5. 50	7. 90	11.00	8.00	25. 00	25. 00	25. 00	25. 00
特性	液状化パラメータ	液状化パラメータ		0. 50	0.50	0.50	0. 50	0.50	0.50	0.50	0.50
1.11			p 2	1. 00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
			c ₁	1.69	2. 13	2. 41	2.00	8. 75	8. 75	8. 75	8.75

注記* :括弧内の数字は、地下水位以浅の数値を表す。

表 4-4 設置変更許可申請書に記載されていない解析用物性値(非液状化検討対象層)

		地	質区分		新期砂層·沖積層			古安	田層		
	物性値			埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物理	密度	ρ	$(g/cm^3)$	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	$G_{\text{ma}}$	$(kN/m^2)$	$7.33 \times 10^4$	$5.50 \times 10^4$	$1.09 \times 10^{5}$	9. $57 \times 10^4$	$1.39 \times 10^{5}$	$1.61 \times 10^5$	$1.39 \times 10^5$	$1.39 \times 10^{5}$
変形	基準平均有効拘束圧	$\sigma_{ma},$	$(kN/m^2)$	41.0	170.0	60.0	94. 0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0. 33	0.33	0.33	0.33
	減衰定数の上限値	h max		0. 152	0.136	0. 114	0.162	0.110	0.147	0.110	0. 110
強度特	粘着力	с'	$(kN/m^2)$	7. 4	82. 5	99.6	29. 2	113.0	82. 8	113. 0	113. 0
特性	内部摩擦角	φ,	(° )	31. 7	19. 6	26.8	34. 2	27. 9	28. 7	27. 9	27. 9

表 4-5 設置変更許可申請書に記載されていない解析用物性値(既設地盤改良体)(有効応力解析)

	対象施設			6・7号機 海水貯留堰		√ク基礎, 系配管ダクト		スタービン発電機 ビン発電機用燃		65	号機軽油タンク基	碰
	種別 (地盤種別)			高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	機械攪拌	改良盛土	土質安定 処理土	置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物理特	密度	ρ	$(\mathrm{g/cm}^3)$	1.77	1.85	1.73	1. 99	1.69	1.85	1.85	1.87	1.57
特性	間隙率	n		0.49	0.49	0. 51	0.49	0.48	0.48	0.47	0.47	0.64
	動せん断弾性係数	$G_{\mathrm{ma}}$	$(kN/m^2)$	$1.78 \times 10^6$	$3.15 \times 10^6$	1. $32 \times 10^6$	6. $42 \times 10^5$	1. $49 \times 10^6$	9. $58 \times 10^3$	3. $40 \times 10^6$	2. $42 \times 10^6$	8. $97 \times 10^5$
変形	基準平均有効拘束圧	σ _{ma} ,	$(kN/m^2)$	98.0	98. 0	98.0	98.0	98.0	98.0	98. 0	98. 0	98. 0
特性	ポアソン比	ν		0.33	0. 33	0. 33	0. 33 (0. 43)	0. 33 (0. 28)	0. 20	0.33	0.33	0.33
	減衰定数の上限値	h max		0.050	0.060	0.100	0.060	0. 160	0.050	0.050	0.070	0. 120
強度特性	粘着力	с	$(kN/m^2)$	815	2326	1736	2652	462	100	3536	4894	1393

注記* :括弧内の数字は、地下水位以浅の値を表す。

表 4-6 設置変更許可申請書に記載されていない解析用物性値(新設地盤改良体)(全応力解析)

	対象施設	ŗ.		格納容器圧力逐	大物搬入建屋	
	種別			置換	高圧噴射	置換
物理特性	理 答度 ρ (g/cm³)			1.85	2. 05	1.85
動	動せん断弾性係数 G ₀ (kN/m ² )			$1.31 \times 10^{6}$	$1.45 \times 10^{6}$	$1.31 \times 10^{6}$
的変	ポアソン比	ν		0.302	0.375	0.302
形特	G / G ₀ - γ			$1/(1+10.1 \gamma^{1.21})$	$1/(1+8.06 \gamma^{-1.14})$	$1/(1+10.1 \gamma^{1.21})$
性	$h-\gamma$		(%)	$\gamma / (0.172 \gamma + 0.00783) + 0.401$	$\gamma / (0.107 \gamma + 0.0109) + 0.790$	$\gamma / (0.172 \gamma + 0.00783) + 0.401$

注: γはせん断歪み(%)を示す。

表 4-7 設置変更許可申請書に記載されていない解析用物性値(新設地盤改良体)(有効応力解析)

	対象施設			6 • 7	'号機海水貯	留堰	6・7号機 スクリーン 室		6·7号機 補機冷却用	取水路, 海水取水路		軽油タン 燃料移送系		6号機軽油	タンク基礎
	種別 (地盤種別)			高圧噴射A (砂質土)	高圧噴射B (砂質土)	高圧噴射 (粘性土)	高圧噴射 (砂質土)	無筋コン クリート	置換	機械攪拌	高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	置換	高圧噴射 (粘性土)
物理	密度	ρ	$(g/cm^3)$	1. 94	1.94	1. 81	1. 94	2.30	1.85	1.94	1. 94	1.85	2.05	1. 85	1.91
特性	間隙率	n		0.49	0.49	0.64	0.49	_	0.48	0. 49	0.49	0.48	0.49	0. 48	0.64
	動せん断弾性係数	$G_{ma}$	$(kN/m^2)$	6.98×10 ⁵	3. $10 \times 10^5$	6. 52×10 ⁵	6.98×10 ⁵	9.17×10 ⁶	2. $40 \times 10^5$	2. 51×10 ⁵	6.98×10 ⁵	1. 31×10 ⁶	1. $45 \times 10^6$	$1.31 \times 10^{6}$	1. $22 \times 10^6$
変形	基準平均有効拘束圧	σ _{ma} ,	$(kN/m^2)$	98. 0	98. 0	98.0	98. 0	_	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0
特性	ポアソン比	ν		0. 33	0.33	0. 33	0. 33	0.20	0.33	0.33	0. 33	0.33	0.33	0. 33	0.33
	減衰定数の上限値	h max		0.050	0.050	0.050	0.050	_	0.050	0.050	0.050	0.050	0.050	0.050	0. 050
強度特性	粘着力	c	(kN/m ² )	500	200	500	500	_	500	500	500	4000	4000	4000	2500

表 4-8 設置変更許可申請書に記載されていない解析用物性値(西山層)

			地質区分	西山	山層
物	性値	_		西山層 (T.M.S.L 33.0m以浅)	西山層 (T. M. S. L33.0m~-90.0m)
物理	密度	ρ	$(g/cm^3)$	1.73	1.69
特性	間隙率	n		0.56	0.56
	動せん断弾性係数	G ma	$(kN/m^2)$	$4.16 \times 10^5$	$4.75 \times 10^5$
変形	基準平均有効拘束圧	σ _{ma} ,	$(kN/m^2)$	98. 0	98.0
特性	ポアソン比	ν		0. 33	0.33
	減衰定数の上限値	h max		0. 257	0. 257
強度	粘着力	С	$(kN/m^2)$	1370 – 5. 04 · Z *	1370 – 5. 04 • Z *
特性	内部摩擦角	φ	(° )	0.0	0.0

注記* : Zは, 標高(m)を示す。

表 4-9 設置変更許可申請書に記載されていない解析用物性値(マンメイドロック)

	名	称		マンメイドロック (建屋側方)	マンメイドロック (建屋下)			
	対象が	可設		軽油タンク基礎、取水路、 燃料移送系配管ダクト、 第一ガスタービン発電機基礎、 第一ガスタービン発電機用燃料タンク基礎、 6号機軽油タンク基礎、	軽油タンク基礎, 補機冷却用海水取水路, 燃料移送系配管ダクト, 第一ガスタービン発電機用燃料タンク基礎			
物理	密度	ρ	$(g/cm^3)$	1.75				
特性	間隙率	n		0.56				
	動せん断弾性係数	G m a	$(kN/m^2)$	1. 91×10 ⁶	2. 11×10 ⁶			
変形	基準平均有効拘束圧	σ ,	$(kN/m^2)$	98	. 0			
特性	ポアソン比	ν		0.	36			
	減衰定数の上限値	h max		0. 1	190			
強度特	強 度 粘着力 c (kN/m²)			1840				
特性	内部摩擦角	φ	(°)	0.0				

表 4-10 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (液状化検討対象層)

		地質区分		新其	閉砂層・沖和	責層	古安	田層			
物	性値		埋戻土	埋戻土 新期砂層 沖積層上部 (砂質) 沖積層下部 A2s層		A2s層	A3s層	A2g層 (砂質)	A1g層		
1 理	理			物理	試験		物理試験				
特性	間隙率	n		物理	試験		物理試験				
	動せん断弾性係数	$G_{\text{ma}}$	PS検層に	よるS波速度	度,密度に基	甚づき設定	PS検層によるS波速度, 密度に基づき設定				
変形	基準平均有効拘束圧	σ _{ma} ,	慣月	月値*1	G maに対	応する値	Gmaに対応する値				
特性	ポアソン比	ν		慣用値* ¹ (PS検層)* ² 慣用値* ¹			慣用値*1				
	減衰定数の上限値	h max	動的変形特性に基づき設定			動的変形特性に基づき設定					
度	粘着力	с'			縮試験		三軸圧縮試験	A	2s層で代月	Ħ	
特性	内部摩擦角	φ'		二十二	和自政制度		二甲红柏武峽				
	変相角	ф р									
		S ₁									
液状化		w1			度試験結果		液状化強度試験結果				
特性	液状化パラメータ	p 1	に基	づく要素シ	/ミュレーシ	/ョン	に基づく要素シミュレーション				
		p 2									
		c ₁									

注記*1 : 液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No. 869) (運輸省港湾技術研究所, 平成9年6月)

*2:括弧内は、地下水位以浅の根拠を表す。

表 4-11 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (非液状化検討対象層)

	批	2質区分		新期砂層・沖積層			古安	田層				
物	性値		埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2al層	A2g層 (シルト質)	A1c層		
物理			物	理試験		物理試験						
特性	間隙率	率 n 物理試験			物理	試験		1				
	動せん断弾性係数	G ma		よるS波速度, 基づき設定	PS検層によるS波速度、密度に基づき設定							
変形	基準平均有効拘束圧	σ _{ma} ,	G mal Z	対応する値		G maに対	応する値		A9 - 🖾	で代用		
特性	ポアソン比	ν	1	貫用値*		慣用	目値*		AZC層	CIUM		
	減衰定数の上限値 h max		動的変形特	性に基づき設定	動的変形特性に基づき設定							
強度	粘着力	с'	= ##	圧縮試験								
特 性	内部摩擦角	φ'			三軸圧縮試験				r Version v			

注記*:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法(港湾技研資料No.869) (運輸省港湾技術研究所,平成9年6月)

# 表 4-12 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (既設地盤改良体) (有効応力解析)

	対象施設		6·7号機 海水貯留堰				第一ガスタービン発電機基礎, 第一ガスタービン発電機用燃料タンク基礎			6号機軽油タンク基礎		
	種別 (地盤種別)		高圧噴射 (砂質土)	置換 高圧噴射 機械攪拌 改良盛土 土質安定 処理土			置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)			
物理	密度	ρ			物理試験			工法別 平均値 ^{*1}		物理試験		
特性	間隙率	n	工法別 平均値* ²	************************************				工法別 平均値* ³	物理試験			
	動せん断弾性係数	$G_{\text{ma}}$		湿潤密度及びPS検層				文献*4	湿潤	割密度及びPS	<b></b>	
変形	基準平均有効拘束圧	σ _{ma} ,					慣用値					
特性	ポアソン比	ν		慣用値		慣用値 (PS検層)*5	慣用値 (PS検層)*5	文献*4		慣用値		
	減衰定数の上限値	h max	文献*6	動的変				形試験				
強度特性	粘着力	С		一軸圧縮試験				設計値	一軸圧縮試験			

注記*1 : 置換工法における湿潤密度の工法別平均値

*2:高圧噴射(砂質土)における間隙率の工法別平均値 *3:置換工法における間隙率の工法別平均値

*3: 直換工法における同原学の工法別平均恒 *4: 第2版 流動化処理土利用技術マニュアル(独立行政法人土木研究所,平成19年) *5: 括弧内の数字は、地下水位以浅の値を表す。 *6: 改訂版 建築物のための改良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工法ー (日本建築センター,平成14年11月)

表 4-13 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (新設地盤改良体)(全応力解析)

	対象施設		格納容器圧力逐	大物搬入建屋	
	種別		置換	高圧噴射 (砂質土)	置換
物理特性	密度	ρ	工法別平均値 に基づき設定	対象土層の最大値 に基づき設定	工法別平均値 に基づき設定
	動せん断弾性係数	$G_0$	設計S波速度, 密度に基づき設定	設計S波速度, 密度に基づき設定	設計S波速度, 密度に基づき設定
変	ポアソン比	ν		工法別実績値	
形特性	$G/G_0-\gamma$		工法別実績値 軽油タンク基礎(置換) に基づき設定	軽油タンク基礎 (高圧噴射(砂質土))	工法別実績値 軽油タンク基礎(置換) に基づき設定
	$h-\gamma$			に基づき設定	

表 4-14 設置変更許可申請書に記載されていない解析用物性値の設定根拠 (新設地盤改良体) (有効応力解析)

	対象施設		6・7号機 6・7号機 スクリーン室		神	6·7号機取水路, 補機冷却用海水取水路				軽油タンク基礎, 燃料移送系配管ダクト		6号機軽油タンク基礎	
種別 (地盤種別)			高圧噴射A,B 高圧噴射 高圧噴射 (砂質土) (粘性土) (砂質土)		無筋コン クリート	置換	機械攪拌	高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	置換	高圧噴射 (粘性土)	
埋	密度	ρ	対象土層の最	対象土層の最大値			対象土層	の最大値	工法別 平均値	対象土層 の最大値	工法別 平均値	対象土層 の最大値	
特性	間隙率	n	工法別平均	工法別平均値					工法別平均	7値			
	動せん断弾性係数	$G_{\text{ma}}$	設計S波速度 密度に基づき		文献*1		ら推定した まに基づき			設計S波速度, 密度に基づき設定			
変形	基準平均有効拘束圧	σ _{ma} ,	慣用値*3		-				慣用値*	3			
特性	ポアソン比	ν	慣用値*3		文献*1				慣用値*	3			
	減衰定数の上限値	h max	文献*2	文献*2		文献*2							
強度特性	粘着力	С	設計一軸圧縮	-	設計一軸圧縮強度								

表 4-15 設置変更許可申請書に記載されていない解析用物性値の設定根拠(西山層)

	地質	区分	西山	1層			
物	性値		西山層 (T. M. S. L33.0m以浅)	西山層 (T. M. S. L33.0m~-90.0m)			
物理	密度	ρ	物理試験				
特性	間隙率	n	物理	試験			
	動せん断弾性係数	$G_{\text{ma}}$	PS検層によるS波速度	,密度に基づき設定			
変形	基準平均有効拘束圧	σ _{ma} ,	慣用	· · · · · · · · · · · · · · · · · · ·			
特性	ポアソン比	ν	慣用	値*			
	減衰定数の上限値	h max	動的変形特性に基づき設定				
強度	度   位 目 刀		三軸圧縮試験				
特性 内部摩擦角 φ		二、毗/土	저면 라시 정보				

注記*:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No. 869) (運輸省港湾技術研究所,平成9年6月)

# 表 4-16 設置変更許可申請書に記載されていない解析用物性値の設定根拠(マンメイドロック)

	名 称		マンメイドロック (建屋側方)	マンメイドロック (建屋下)			
	対象施設		軽油タンク基礎、取水路, 燃料移送系配管ダクト, 第一ガスタービン発電機基礎, 第一ガスタービン発電機用燃料タンク基礎, 6号機軽油タンク基礎	軽油タンク基礎, 補機冷却用海水取水路, 燃料移送系配管ダクト, 第一ガスタービン発電機用燃料タンク基礎			
理	密度	ρ	物理試験				
特性	間隙率	n	西山層相当に設定				
	動せん断弾性係数	G m a	弾性波速度測定試験による	波速度, 密度に基づき設定			
形	基準平均有効拘束圧	$\sigma_{ma}$ ,	慣用	]値*			
特性	ポアソン比	ν	弾性波速度	<b>を削定試験</b>			
	減衰定数の上限値	h max	動的変形特性に基づき設定				
強 度 粘着力 c				縮試験			
特性	内部摩擦角	φ					

注記*:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法(港湾技研資料No. 869) (運輸省港湾技術研究所,平成9年6月)

## 4.2.1 全応力解析に用いる解析用物性値

設置変更許可申請書に記載されていない緊急時対策所,5 号機タービン建屋の解析用物性値を表4-17~表4-23に,その根拠を表4-24~表4-26に示す。なお,解析用物性値は原則,昭和58年8月22日付け58資庁第9522号にて認可された柏崎刈羽原子力発電所第5号機の工事計画の添付資料「IV-2-5 原子炉建屋の耐震性についての計算書」に記載された解析用物性値に基づいているが,埋戻土(T.M.S.L.0.0m~T.M.S.L.12.0m)については「表4-3 設置変更許可申請書に記載されていない解析用物性値(液状化検討対象層)」の埋戻土の解析用物性値とする。

表 4-17 設置変更許可申請書に記載されていない解析用物性値 (水平成層地盤の上端標高(m)及び層厚(m))

地質	緊急時対策所,5号機タービン建屋					
埋戻土(1)	T. M. S. L. 12.0m (層厚 4.0m)					
埋戻土(2)	T.M.S.L. 8.0m (層厚 4.0m)					
埋戻土(3)	T.M.S.L. 4.0m (層厚 4.0m)					
古安田層	T.M.S.L. O.Om (層厚 9.Om)					
西山層(1)	T.M.S.L. —9.0m (層厚 51.0m)					
西山層(2)	T. M. S. L. -60.0m (層厚 40.0m)					
西山層(3)	T. M. S. L. -100. 0m (層厚 34. 0m)					
椎谷層	T. M. S. L. —134. 0m*					

注記*:解放基盤表面レベル

表 4-18 設置変更許可申請書に記載されていない解析用物性値 (各層のせん断波速度:  $V_s(m/s)$ )

地質	緊急時対策所,5号機タービン建屋
埋戻土(1)	182
埋戻土(2)	230
埋戻土(3)	256
古安田層	310
西山層(1)	490
西山層(2)	560
西山層(3)	610
椎谷層	710

表 4-19 設置変更許可申請書に記載されていない解析用物性値 (各層の単位体積重量: γ₊(kN/m³))

地質	緊急時対策所,5号機タービン建屋
埋戻土(1)	17. 6
埋戻土(2)	17. 6
埋戻土(3)	17. 6
古安田層	17. 5
西山層(1)	16. 7
西山層(2)	17. 2
西山層(3)	18. 0
椎谷層	19. 9

表 4-20 設置変更許可申請書に記載されていない解析用物性値 (各層のポアソン比: v)

地質	緊急時対策所,5 号機タービン建屋
埋戻土(1)	0. 415
埋戻土(2)	0. 415
埋戻土(3)	0. 415
古安田層	0. 480
西山層(1)	0. 450
西山層(2)	0. 440
西山層(3)	0. 430
椎谷層	0. 420

表 4-21 設置変更許可申請書に記載されていない解析用物性値 (各層の初期せん断弾性係数: $G_0(kN/m^2)$ )

地質	緊急時対策所,5号機タービン建屋
埋戻土(1)	0. 592×10 ⁵
埋戻土(2)	0. 949×10 ⁵
埋戻土(3)	1. 18×10 ⁵
古安田層	1.71×10 ⁵
西山層(1)	4. 09×10 ⁵
西山層(2)	5. 50×10 ⁵
西山層(3)	6. 83×10 ⁵
椎谷層	10. 2×10 ⁵

表 4-22 設置変更許可申請書に記載されていない解析用物性値 (各層の動的変形特性:  $G/G_0 \sim \gamma$ )

(1/11/2)3763(2/1/13/12:07/00/7/					
地質	緊急時対策所,5号機タービン建屋				
埋戻土(1)					
埋戻土(2)	$1/(1+11.7 \gamma^{0.861})$				
埋戻土(3)					
古安田層	$1/(1+3.526 \gamma^{0.990})$				
西山層(1)					
西山層(2)	$1/(1+3.67 \gamma^{1.100})$				
西山層(3)					

表 4-23 設置変更許可申請書に記載されていない解析用物性値 (各層の動的変形特性: h~y)

地質	緊急時対策所,5号機タービン建屋				
埋戻土(1)					
埋戻土(2)	$\gamma / (0.0482 \gamma + 0.00509) + 1.71$				
埋戻土(3)					
古安田層	$8.\ 27\ \gamma^{0.\ 238}$				
西山層(1)					
西山層(2)	12. 98 $\gamma$ 0. 532				
西山層(3)					

表 4-24 設置変更許可申請書に記載されていない解析用物性値 (水平成層地盤の上端標高(m)及び層厚(m))の設定根拠

パラメータ		緊急時対策所,5 号機タービン建屋			
	埋戻土	・ボーリング調査結果に基づき設定			
地層境界	古安田層	・ボーリング調査結果に基づき設定			
	西山層	・ボーリング調査結果に基づき設定			
解放基盤表面レベル		・PS 検層結果に基づき設定			

表 4-25 設置変更許可申請書に記載されていない解析用物性値の設定根拠 ( $V_s$ ,  $\gamma_t$ ,  $\nu$ )

パラメータ				緊急時対策所,5 号機タービン建屋
)		m/s	埋戻土	・追加ボーリング孔の PS 検層結果に基づく平均値
せん断波	$V_{s}$		古安田層	・炉心孔の PS 検層結果に基づく平均値
速度			西山層	・炉心孔の PS 検層結果に基づく平均値
			椎谷層	・炉心孔の PS 検層結果に基づく平均値
			細弓士	・追加ボーリング孔の室内試験供試体の
	γt	kN/m³	埋戻土	平均値
			古安田層	・炉心ボーリングの三軸圧縮試験供試体
単位				の平均値
体積重量			西山層	・炉心ボーリングの三軸圧縮試験供試体
				の平均値
			椎谷層	・炉心ボーリングの三軸圧縮試験供試体
			作出/口7/冒	の平均値
			埋戻土	・追加ボーリング孔の PS 検層結果に基づ
ポアソン比	ν		生庆工	く平均値
			古安田層	・炉心孔の PS 検層結果に基づき設定
			西山層	・炉心孔の PS 検層結果に基づき設定
			椎谷層	・炉心孔の PS 検層結果に基づき設定

表 4-26 設置変更許可申請書に記載されていない解析用物性値の設定根拠  $(G_0,\ G/G_0 \sim \gamma\,,\ h \sim \gamma\,)$ 

	( - v, - , - v / ) <del> / / / / / / / / / / / / / / / / / </del>							
	パラメ	ータ		緊急時対策所,5 号機タービン建屋				
		kN/m²	埋戻土	・追加ボーリング孔の PS 検層結果に基				
初期				づく平均値				
せん断	$G_0$		古安田層	・炉心孔の PS 検層結果に基づき設定				
弾性係数			西山層	・炉心孔の PS 検層結果に基づき設定				
			椎谷層	・炉心孔の PS 検層結果に基づき設定				
	G/G₀∼γ h∼γ	γ – %	埋戻土	・追加ボーリングの動的せん断試験結				
				果に基づき設定				
444 赤双			古安田層	・炉心ボーリングの動的せん断試験結				
				果に基づき設定				
特性			西山層	・炉心ボーリングの動的せん断試験結				
				果に基づき設定				
			椎谷層	・解放基盤表面以深のため、線形				

### 4.2.2 有効応力解析に用いる解析用物性値

建物・構築物及び土木構造物の動的解析において、地震時における地盤の有効応力の変化に応じた影響を考慮する場合は、有効応力解析を実施する。有効応力解析に用いる液状化強度特性は、敷地の地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定することを基本とする。

設定する液状化強度特性は、試験データのばらつきを考慮し、液状化強度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不変分散に基づく標準偏差を用いた「回帰曲線 $-1\,\sigma$ 」について整理する。

設置変更許可申請書における解析用物性値は全応力解析用に設定しているため、液状 化検討対象層の物理的及び力学的特性から、各層の有効応力解析に必要な物性値を設定 する。

有効応力解析に用いる解析用物性値のうち一部の地盤材料については、同等若しくは保守的な他の地盤材料の試験結果を代用する。解析用物性値の代用等の考え方は(参考資料2)に示す。

また,有効応力解析に用いる西山層の解析用物性値は,設置変更許可申請書(添付書類六)に記載した値に基づき,表 4-8 のとおりに設定する。西山層の速度構造については,後述の(6. 地盤の速度構造)に示す。

なお、地盤の物理特性及び力学特性は、日本工業規格(JIS)又は地盤工学会(JGS)の基準に基づいた試験の結果から設定する。

### (1) 液状化影響検討方針の概要

液状化影響評価のフローを図4-7に示す。

設置変更許可申請書における地質区分は全応力解析用に設定していることから、工事計画認可申請における地質区分については、有効応力解析を実施するにあたり地質調査や室内試験に基づき細分化する。

次に,道路橋示方書(V耐震設計編)・同解説((社)日本道路協会,H24.3)(以下,「道路橋示方書V」という)に基づき,液状化検討対象層を抽出する。また,保守的な配慮として,道路橋示方書Vでは液状化の判定を行う必要のある土層に該当しないとされている地表面から 20m 以深及び洪積層に該当する地質区分についても,液状化検討対象層の抽出を行う。

これにより抽出した液状化検討対象層の物理的性質及び力学的性質について,地質調査 及び室内試験を実施し,有効応力解析に必要な物性値を設定する。

液状化強度試験に用いる供試体の採取箇所は、対象施設近傍における地層から選定することを基本とする。次に、地盤の液状化強度特性の代表性及び網羅性を確認するため、選 定箇所と敷地内の調査箇所における地質調査及び土質材料の物理特性等を比較する。

また、柏崎刈羽原子力発電所では、設置変更許可申請後に追加の液状化強度試験を実施している。工事計画認可申請では、これらの試験結果に基づき、最小二乗法による液状化抵抗曲線の回帰曲線を設定し、その回帰係数の自由度を考慮した不偏分散に基づく標準偏差 $\sigma$ を用いて、耐震評価における液状化抵抗曲線を「回帰曲線 $-1\sigma$ 」にて設定することにより、保守性を考慮する。

なお,有効応力解析に用いる解析コードは,サイクリックモビリティを適切に表現できるものを用いる。

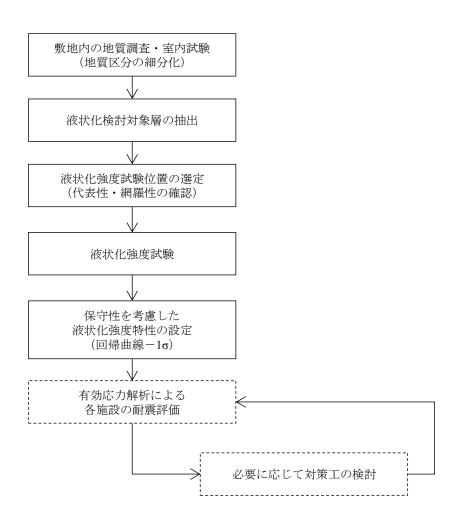



図 4-7 液状化影響評価のフロー

## (2) 地質区分の細分化

設置変更許可申請書の地質層序表を表 4-27 に示す。設置変更許可申請段階での対象施設近傍の地質学的な地質区分は,下位から西山層 $N_1$  部層,古安田層 $A_1$ , $A_2$ , $A_3$ 部層,大湊砂層,番神砂層及び新期砂層・沖積層である。このうち古安田層については,粘土~シルト,砂や砂礫といった様々な層相からなるため,「礫層」,「砂質土」,「粘性土」,「粘性土・砂質土互層」とさらに地質区分している。なお,設置変更許可申請段階での解析用地質区分では,古安田層を「洪積砂質土層」と「洪積粘性土層」に区分している。

工事計画認可申請の解析用地質区分は、設置変更許可段階の地質学的な地質区分を踏まえて、表 4-28 に示す区分とする。また、同表に示すとおり、工事計画認可申請においては、有効応力解析を実施するにあたり、設置変更許可段階の地質区分のうち、埋戻土、新期砂層・沖積層、古安田層の A2g 層について、同年代における堆積環境(地質学的観点)及び粒度分析や室内試験結果(工学的観点)から、地質区分を細分化する。地質区分の詳細については、(参考資料 8) に示す。

**1 テフラ・放射年代 時 代 地層名 主な層相・岩質 灰白色~茶褐色の細~中粒砂、シルト層を挟在 完新世 新期砂層·沖積層 ← 腐植 (9,910±30年前) 番神砂層 灰白色~赤褐色の中~粗粒砂 後期 褐色~黄褐色の中~粗粒砂, 大湊砂層 シルトの薄層を含む 刈羽テフラ(約20万年前) 最上部は砂 第 A4部層 粘土~シルト,砂を多く挟む 古 粘土~シルト 更 四 A3部層 ニー 縞状粘土,有機物,砂を伴う,貝化石を含む 安 中期 新  $\blacksquare$ ← Ata-Th (約24万年前) 粘土~シルト A2部層 紀 砂、厚い砂礫、有機物を挟む 層 ##: ← Kkt (約33~34万年前) 粘土~シルト Aı部層 砂,砂礫を挟む 灰 爪 層 凝灰質泥岩, 凝灰質砂岩, 凝灰岩 ← Iz (約150万年前) 前期 N3部層 砂岩、凝灰岩、ノジュールを挟む 貝化石を含む ← Fup(約220万年前) ← Tsp(約230万年前) ← Az(約240万年前) 西 ルト質泥岩 山 N2部層 縞状泥岩, 凝灰岩, ノジュールを多く挟む 鮮 後期 ← Nt-17 (340±20万年前) /ルト質〜粘土質泥岩 新  $N_1$ 部層 砂岩, 凝灰岩, ノジュールを挟む 珪質海綿化石を含む ← Nt-7 (350±20万年前) 第 世 前期 砂岩、砂岩・泥岩互層、細礫岩等を挟む Ξ 椎谷層 中 後期 紀 新 寺 泊 層 黑色泥岩, 砂岩·泥岩互層 世 中期

表 4-27 設置変更許可申請書の地質層序表

※1 テフラの名称・年代は、岸ほか (1996) などによる。 ※2 安田層下部層のMIS10~MIS7とMIS6の境界付近の堆積物に対する仮称。

注: 設置変更許可申請書より抜粋 (一部加筆)

**~~~~** 不整合

表 4-28 工事計画認可申請における有効応力解析に用いる地質区分

時	代			15 - 1		設置変更許可申請段階 における地質区分		主な層相
		埋戻土 粒度分析による細分化					埋戻土	砂
					埋戻土Ⅱ	シルト		
					新期砂層	砂		
	完新		新期砂層	. 油種屋	沖積層上部(シルト質)	シルト		
	世		机规砂槽	* 作相間	沖積層上部(砂質)	砂		
				堆積環境による細分化	沖積層下部	砂		
			A ₃ 部層	粘性土	A3c層	シルト		
				粘性土・砂質土互層	A3a1層	砂・シルト互層		
第四				砂質土	A3s層	砂		
紀				粘性土	A2c層	シルト		
	更	更新	十七四层			粘性土·砂質土互層	A2a1層	砂・シルト互層
	世		A ₂ 部層	砂質土	A2s層	砂		
				礫層	A2g層(シルト質)	シルト質砂礫		
				堆積環境による細分化	A2g層 (砂質)	砂礫		
			A 並展	粘性土	A1c層	シルト		
			A ₁ 部層	礫層	A1g層	シルト質砂礫~砂礫		

: 工事計画認可申請において細分化する地層

### (3) 液状化検討対象層の抽出方針

道路橋示方書Vでは,図 4-8 に示すように,液状化の判定を行う必要がある土層(=液状化検討対象層)を,「沖積層 * 」であり,1) $\sim$ 3)の条件全てに該当する土層と定めている。図 4-9 に道路橋示方書V における液状化判定の評価フローを示す。

なお,道路橋示方書Vの条件は指針類(鉄道構造物等設計標準・同解説 耐震設計編(平成24年9月),港湾の施設の技術上の基準・同解説(平成19年))でほぼ共通している。 柏崎刈羽原子力発電所の液状化検討対象層の抽出では,道路橋示方書Vに基づき液状化検討対象層を抽出することを基本とする。

また,道路橋示方書Vにおける洪積層*の扱いは,図 4-10 に示すとおり,液状化の判定を行う土層に該当しないとされているが,基準地震動の規模の大きさを鑑み,本評価では念のために洪積層(古安田層)の砂層及び砂礫層についても,液状化検討対象層として抽出し,保守的な耐震評価を行う。加えて,道路橋示方書Vでは検討対象外とされている地表面から 20m 以深の土層についても,液状化検討対象層の抽出対象とする。

注記*:本資料では、道路橋示方書Vで用いられている『沖積層』及び『洪積層』という 用語を使用する。なお、道路橋示方書Vでは、沖積層については、「第四紀のうち新しい地質時代(完新世)における堆積物及び埋立土による土層に概ね対応すると考えてよい」とされており、洪積層については、「第四紀のうち古い地質時代(更新世)における堆積物による土層に概ね対応すると考えてよい」とされている。

沖積層の土層で次の3つの条件全てに該当する場合においては、地震時 に橋に影響を与える液状化が生じる可能性があるため、(2)の規定によっ て液状化の判定を行わなければならない。

- 1) 地下水位が地表面から10m以内にあり、かつ、地表面から20m以内 の深さに存在する飽和土層
- 2) 細粒分含有率*FC*が35%以下の土層,又は,*FC*が35%を超えても塑性指数*I*₆が15以下の土層
- 3) 50%粒径 $D_{50}$ が10mm以下で、かつ、10%粒径 $D_{10}$ が1mm以下である土層

図 4-8 道路橋示方書Vにおける液状化の判定を行う必要がある土層 (引用:(社)日本道路協会,道路橋示方書(V耐震設計編)・同解説,H24.3(抜粋))

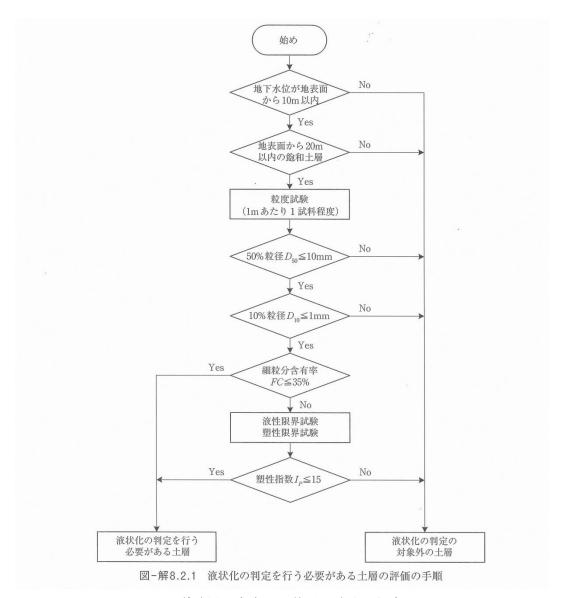



図 4-9 道路橋示方書Vに基づく液状化判定フロー

(引用:(社)日本道路協会,道路橋示方書(V耐震設計編)・同解説,H24.3(抜粋))

洪積層は、東北地方太平洋沖地震や兵庫県南部地震を含む既往の地震において液状化したという事例は確認されていない。洪積層は一般にN値が高く、また、続成作用により液状化に対する抵抗が高いため、一般には液状化の可能性は低い。このため、原則として洪積層は液状化の判定の対象とする必要はない。なお、ここでいう洪積層とは、第四紀のうち古い地質時代(更新世)における堆積物による土層に概ね対応すると考えてよい。

図 4-10 道路橋示方書Vにおける洪積層に関する記述

(引用:(社)日本道路協会,道路橋示方書(V耐震設計編)·同解説,H24.3(抜粋))

# (4) 液状化検討対象層の抽出結果

図 4-11 に液状化検討対象層の抽出フローを示す。

まず、道路橋示方書Vの液状化判定フローに基づき、沖積層における液状化検討対象層を抽出した[STEP①]。続いて、保守的な耐震評価を行う観点から洪積層(古安田層)の砂層及び砂礫層についても、液状化検討対象層として抽出した[STEP②]。

この結果,敷地における液状化検討対象層は,沖積層では「埋戻土」,「新期砂層」,「沖積層上部(砂質)」及び「沖積層下部」が抽出され,洪積層(古安田層)では「A3s 層」,「A2s 層」,「A2g 層(砂質)」及び「A1g 層」が抽出された。表 4-29 に液状化検討対象層の抽出結果を示す。

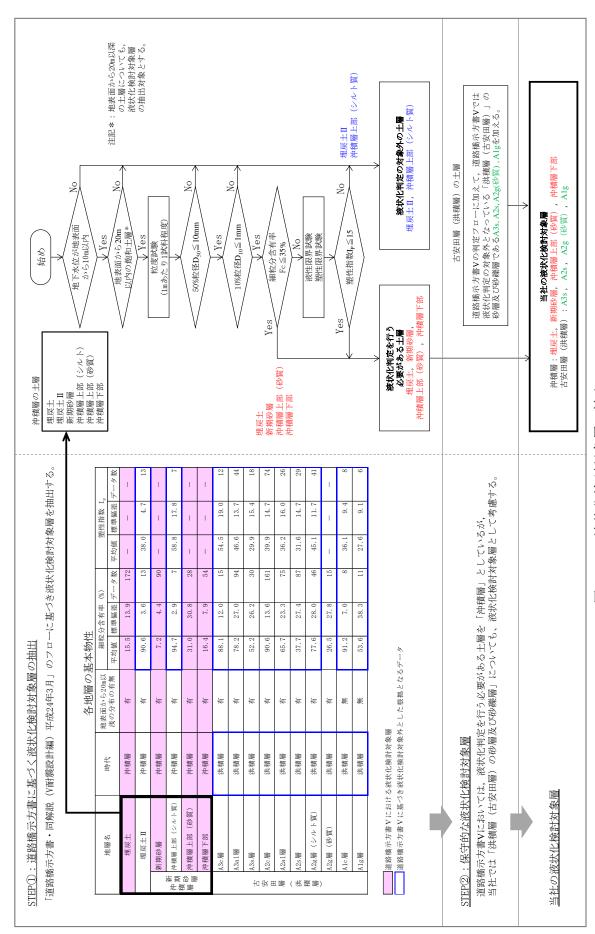



図4-11 液状化検討対象層の抽出フロー

表 4-29 液状化検討対象層の抽出結果

	地層·地質区分		道路橋示方書Vにおける 液状化検討対象層	当社における 液状化検討対象層	備考
埋 戻	埋戻土	砂	•	•	
土	埋戻土Ⅱ	シルト	-	_	
	新期砂層	砂	•	•	
भ 積 層	沖積層上部(シルト質)	シルト	_	_	
種 層 層	沖積層上部(砂質)	砂	•	•	
	沖積層下部	砂	•	•	
	A3c層	シルト	_	_	
	A3al層	砂・シルト 五層	_	_	
	A3s層	砂		• 0	洪積層であるが検討対象 とする。
古安	A2c層	シルト	_	_	
田層	A2al層	砂・シルト 五層	_	_	
( 洪 積	A2s層	砂		• 0	洪積層であるが検討対象 とする。
層 )	A2g層(シルト質)	シルト質砂礫	_	_	
	A2g層(砂質)	砂礫		• 0	洪積層であるが検討対象 とする。
	A1c層	シルト	-	_	
	Alg層	シルト質砂礫 ~砂礫	_	• 0	洪積層であるが検討対象 とする。

### 凡例

● : 道路橋示方書Vの判定により、検討対象に該当するもの
○ : 道路橋示方書Vでは検討対象外と判定されるが、保守的な配慮として検討対象に加えるもの
- : 道路橋示方書Vの判定により、検討対象外となるもの
: 液状化検討対象層に該当するもの

## (5) 有効応力解析に用いる物性値の設定方針

液状化検討対象層及び非液状化検討対象層の物理特性,動的変形特性及び液状化特性については,地層ごとに有効応力解析に必要な物性値を設定する。これらの物性値は,JIS(日本工業規格)又はJGS(地盤工学会)の規格・基準に基づいた試験結果に基づき設定する。

表 4-30 に有効応力解析に用いる物性値とその試験方法を示す。液状化強度試験の概要を注:液状化強度試験の方法は、設置変更許可申請段階で示した方法と同一図 4-12 に示す。

なお、設置変更許可申請段階においては、大湊側敷地だけでなく荒浜側敷地で採取した 試料についても、N値、細粒分含有率 Fc 等を比較し、液状化強度試験の代表性を確認した 上で、液状化特性の設定に用いていたが、工事計画認可申請においては、大湊側敷地で採 取された試料のみの試験結果を用いて各地層の物性値を設定する。

室内試験・原位置試験の詳細については、KK7 補足-024-1 (別冊)「地盤の支持性能 資料集」に示す。

試験により設定する物性値 試験方法 基準・規格名 記号 名称 規格・基準番号 土粒子の密度試験方法 I I S A 1202 密度 物理 土の湿潤密度試験方法 J I S A 1225 特性 土粒子の密度, 土の乾燥密度 J I S A 1202 間隙率 n に基づき設定 J I S A 1225 地盤の弾性波速度検層方法 J G S 1122 PS 検層の S 波速度, 密度よ 動せん断弾性係数  $G_{ma}$ (PS 検層) 動的 り算出 с, 粘着力 土の圧密非排水 (CU) 三軸圧 変形 JGS 0523 φ, 内部摩擦角 縮試験方法 特性 地盤材料の変形特性を求める 最大減衰定数 J G S 0542  $h_{max}$ ための繰返し三軸試験方法 土の変形特性を求めるための 中空円筒供試体による繰返し 液状化 液状化抵抗曲線 JGS 0543 ねじりせん断試験方法,及び 特性 (液状化パラメータ) JGS 0541 土の繰返し非排水三軸試験方 法を参考に設定

表 4-30 有効応力解析に用いる物性値とその試験方法

## ○ 液状化強度試験方法

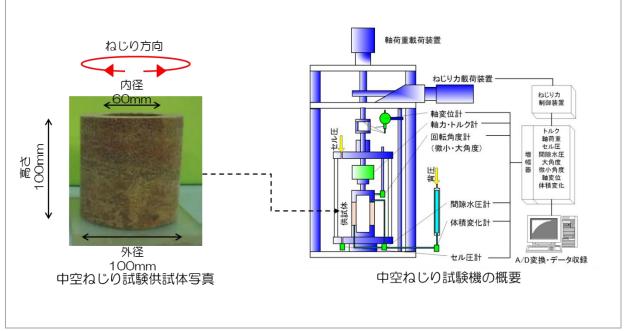
## 【試験概要】

・ 土の変形特性を求めるための中空円筒供試体による繰り返しねじりせん断試験方法 (地盤工学会: JGS 0543)及び土の繰返し非排水三軸試験方法(地盤工学会: JGS 0541)を参考に実施。

### 【試験条件】

· 供試体寸法 : 外径 100mm (内径 60mm), 高さ 100mm

(一部供試体は,外径70mm (内径30mm),高さ100mm)


· 載荷波形 : 正弦波 0.1Hz

・ 拘束圧 :対象地層の有効土被り圧を考慮して設定

・ 中空円筒供試体の上端又は下端にトルクを加えて円周方向にねじることによりせん断 応力を加える

・ 繰り返し回数 200 回を上限として, 過剰間隙水圧比 0.95 及び両振幅せん断ひずみ 15% に達するまで試験を実施

・ 所定の両振幅せん断ひずみ (1.5%, 2.0%, 3%, 7.5%, 15%) 及び過剰間隙水圧比 0.95 の繰り返し回数を評価



注:液状化強度試験の方法は、設置変更許可申請段階で示した方法と同一

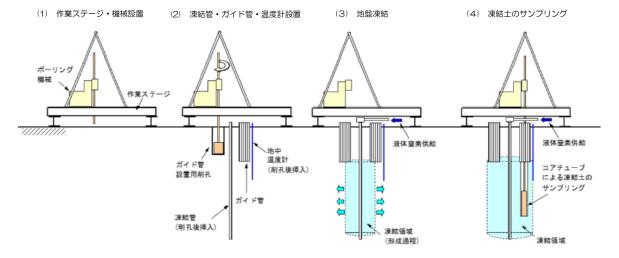
図 4-12 液状化強度試験(中空円筒供試体による繰り返しねじりせん断試験)の概要

## (6) 試料の採取位置及び供試体の選定箇所

液状化検討対象層の物理特性、液状化特性及び動的変形特性を求めるため、サンプリングによる試料採取を実施した。

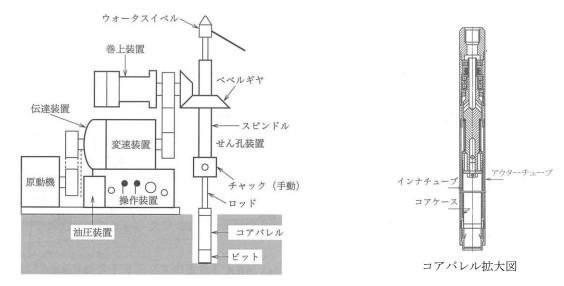
粒度試験などの室内試験に用いる試料は、網羅性の観点から敷地全体の地質分布及び施設の配置を踏まえて採取した。このうち、液状化強度試験に用いる試料の採取位置は、液状化強度特性の代表性を考慮し、液状化を考慮する対象施設の近傍で、かつ、採取可能な層厚を有する箇所を選定することを基本とした。

図 4-14 に、各物性値を設定するための試験に用いた試料の採取位置を、図 4-15  $\sim$  20 4-18 に、採取位置近傍の地質断面中に試料採取深度をプロットした図を示す。


また,液状化強度試験に用いる供試体は,採取したコアサンプルを観察し,液状化特性を取得する観点から,地層の中でも砂分が多い箇所を選定した。

液状化強度試験箇所のボーリング柱状図・コア写真については(参考資料 3)に示す。 なお、古安田層 A2s 層の供試体は、設置変更許可申請段階において実施したサンプリン グ方法と同じ凍結サンプリングを適用する。その他の液状化検討対象層(埋戻土、新期砂 層、沖積層上部(砂質)、沖積層下部)の供試体については、トリプルチューブサンプリン グを適用する。各地質区分に適用したサンプリング手法の一覧を表 4-31 に、液状化強度 試験の供試体採取に用いたサンプリング手法の概念図を図 4-13 に示す。

表 4-31 各地層区分の液状化強度試験供試体のサンプリング手法


サンプリング方法	地層区分	
凍結サンプリング	古安田層(A2s 層)	
トリプルチューブサンプリング	埋戻土,新期砂層,	
	沖積層上部(砂質),沖積層下部	

- 凍結サンプリングは、砂・砂質土地盤や砂礫地盤を対象に高品質な不攪乱試料を採取する方法。
- 凍結管に液体窒素を流し込み、ゆっくりと地盤を凍結させた後に、コアサンプリングを行う。
- サンプリング手順は以下のとおり
  - ① 既往調査より対象土層の厚い箇所を確認し、凍結サンプリング計画地点を決定。
  - ② 凍結サンプリング計画地点近傍にてパイロットボーリング (孔径 ø 86mm) を行い、サンプリング対象層の 深度を確認。
  - ③ 液体窒素を流し込み, 地中温度計が〇度付近になるまで地盤の凍結を行う。
  - ④ 凍結が確認された後、コアチューブによる試料のサンプリングを行う。



(a) 凍結サンプリングの概念図

- ・ トリプルチューブサンプリングは、トリプルチューブサンプラーを用いた採取方法
- トリプルチューブサンプラーは、アウターチューブ、インナーチューブ、コアケースの三重管からなるサンプラーで、外側の回転するアウターチューブで土を切削しながら、内側の回転しないインナーチューブを地盤に押し込み、インナーチューブの内側に装着したコアケース内に試料を採取する。



(引用)一般社団法人 全国地質調査業協会連合会 ボーリングポケットブック(第4版)に一部加筆

### (b) トリプルチューブサンプリングの概念図

図 4-13 液状化強度試験の供試体のサンプリング手法 概念図

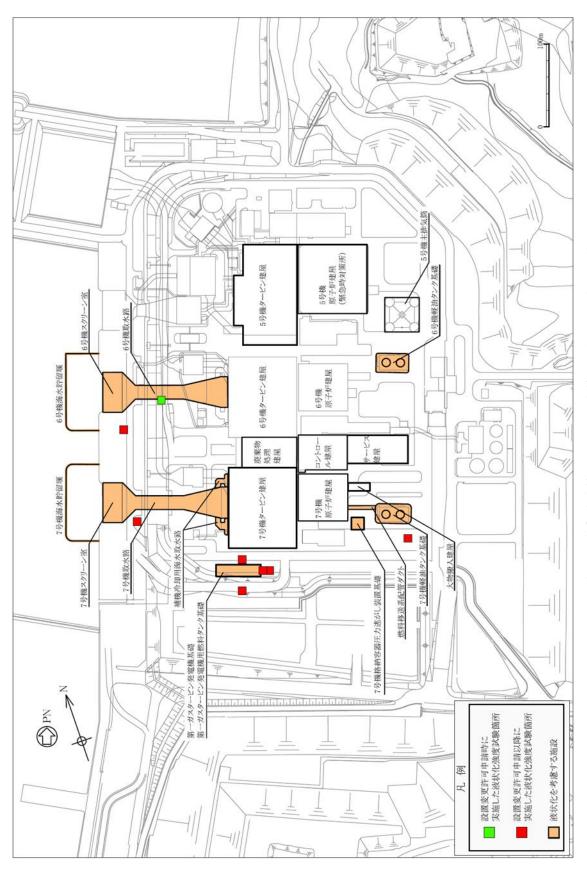



図4-14 液状化強度試験箇所と周辺調査箇所の位置図 (平面図)

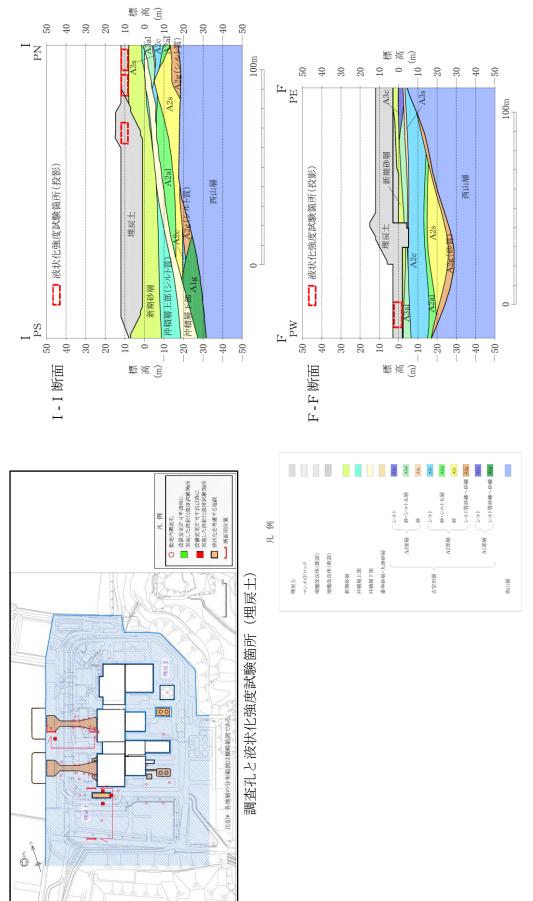
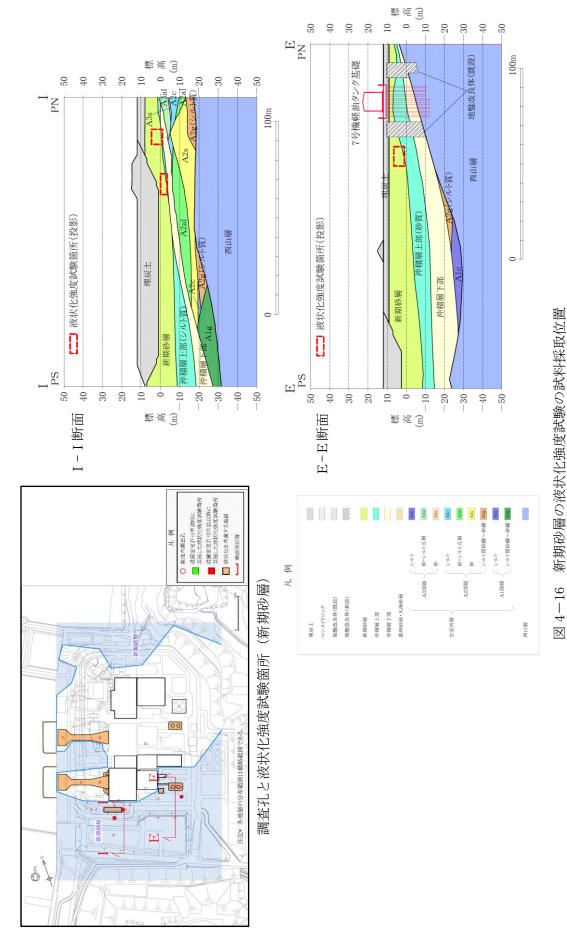




図 4-15 埋戻土の液状化強度試験の試料採取位置



⁵⁷ **59** 

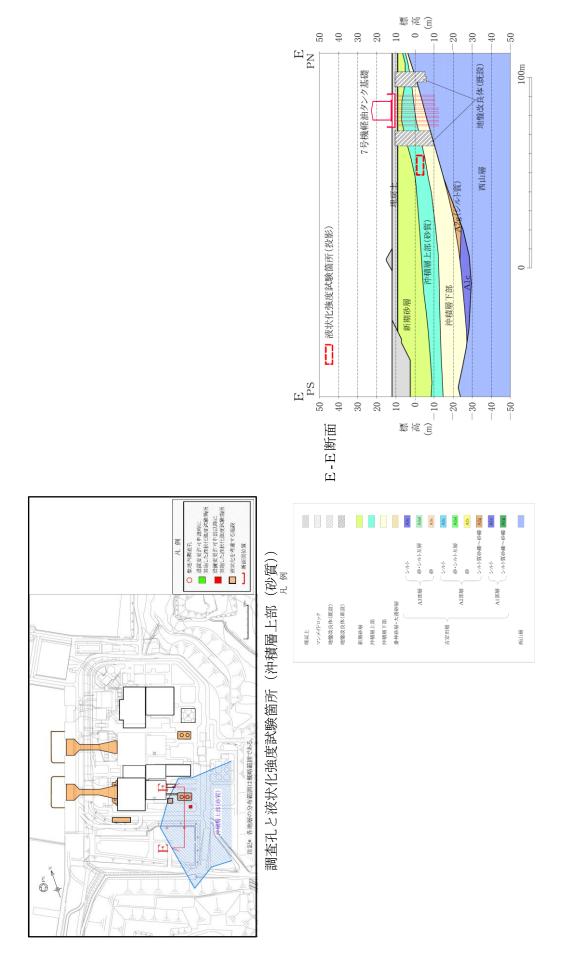



図 4-17 沖積層上部(砂質)の液状化強度試験の試料採取位置

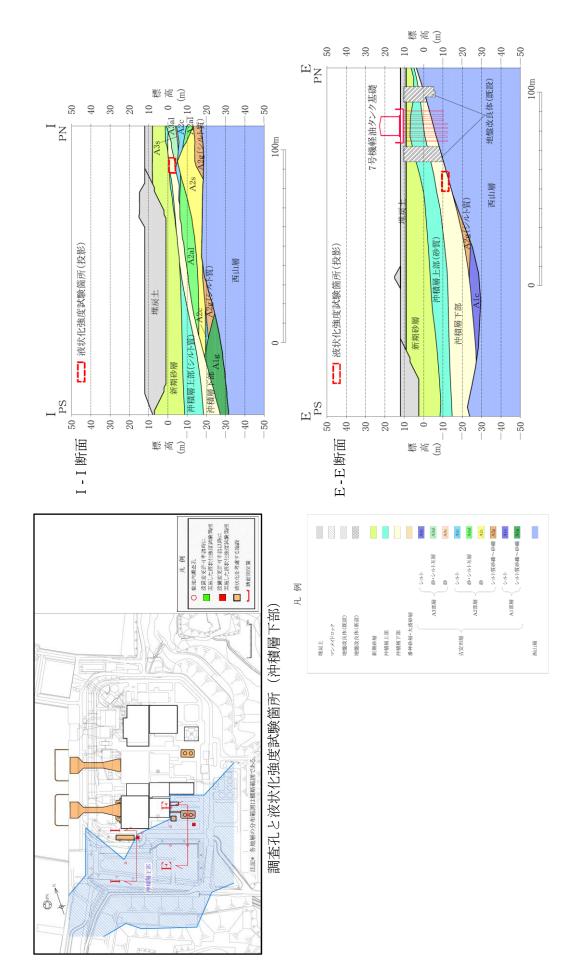



図 4-18 沖積層下部の液状化強度試験の試料採取位置

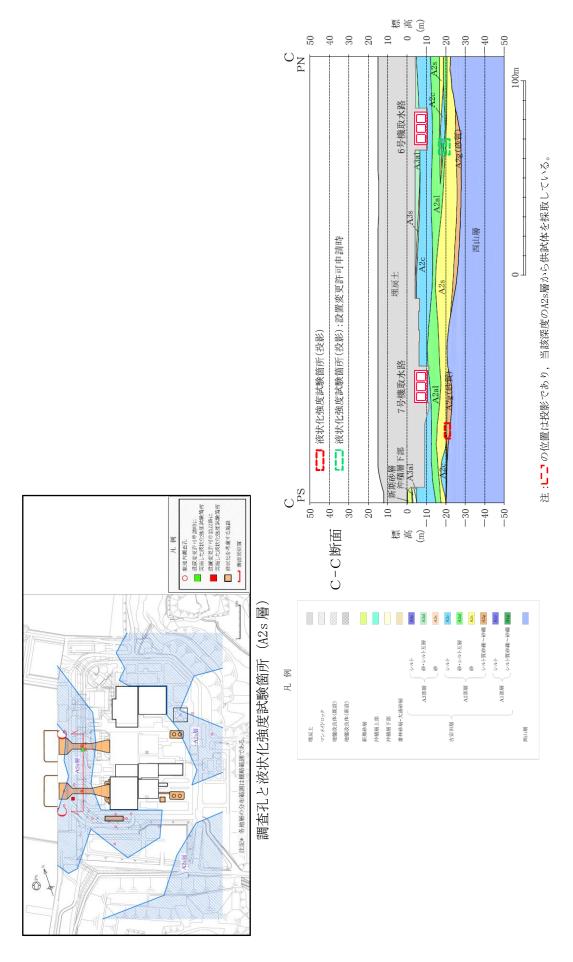



図 4-19 A2s 層の液状化強度試験の試料採取位置

# (7) 液状化強度試験箇所の代表性,網羅性の確認

地盤の液状化強度試験箇所の代表性及び網羅性を確認するため、液状化強度試験の供 試体採取箇所と敷地内の調査箇所における地盤の基本物性を比較し、検討を行う。

ここで、地盤の基本物性の比較指標として、『粒径加積曲線』、『N値 *1 』、『細粒分含有率 Fc』 に着目した。表 4-32 に比較指標の選定理由を示す。各基準類における液状化強度比  $R_L$ の算定で用いる地盤物性を表 4-33 に示す。

比較指標	選定理由	
粒度分布	土の基本的な物理特性であることから、指標として選定した。	
(粒径加積曲線)		
N値*1	各基準類の液状化判定における液状化強度比 R _L の算定式がいずれもN値を	
	パラメータとした式である。また、有効応力解析(FLIP)の簡易パラメ	
	ータ設定法*2にN値がパラメータとして用いられている。以上より、液状化	
	強度比との相関が最も高いと考えられることから、指標として選定した。	
細粒分含有率 Fc	各基準類の液状化判定における液状化強度比 R _L の算定式において、液状化	
	強度比 R _L を補正するパラメータとして用いられており、液状化強度比との	
	相関が高いと考えられることから,指標として選定した。	

表 4-32 地盤の基本物性の比較指標

注記*1:打撃回数 50 回において, 貫入長が 300mm 未満の標準貫入試験箇所は次式により N値を算出した。

*2: 森田年一, 井合進, HanlongLiu, 一井康二, 佐藤幸博: 液状化による構造物被害 予測プログラム FLIP において必要な各種パラメタの簡易設定法, 港湾技術研究 所資料, No. 869, 1997.

表 4-33 各基準類における液状化強度比 R_Lと地盤物性値の関係

基準類名	液状化強度比R _L の算定に用いる 主な地盤物性	液状化強度比 の補正に用いる 地盤物性
道路橋示方書·同解説V 耐震設計編,日本道路協会,2012		細粒分含有率Fc
(下水道施設の耐震対策指針と解説、日本下水道協会、2006)		
(河川砂防技術基準(案)同解説 設計編,日本河川協会編,1997)		
(高圧ガス設備等耐震設計指針,高圧ガス保安協会,2000)	ガス設備等耐震設計指針, 高圧ガス保安協会, 2000)	
港湾の施設の耐震設計に係る当面の措置(その2), 日本港湾協会, 2007	N 値	細粒分含有率Fc
(部分改訂, 2012)		
建築基礎構造設計指針, 日本建築学会, 2001		細粒分含有率Fc
(水道施設耐震工法指針・同解説,日本水道協会,1997)		
鉄道構造物等設計標準·同解説 耐震設計, 鉄道総合技術研究所, 2012		細粒分含有率Fc 平均粒径D ₅₀

## (a) 埋戻土

埋戻土は、敷地内全域に広く分布する。図 4-20 に、埋戻土の液状化強度試験箇所及び敷地内調査孔の位置を示す。

図 4-21 に、液状化強度試験箇所及び敷地内調査孔における埋戻土の粒径加積曲線を示す。敷地内の埋戻土は若干ばらつきがあるものの、砂が主体の粒度分布を示す。液状化強度試験箇所の粒度分布は、概ね敷地内調査孔の平均値±1  $\sigma$  の範囲内に入っている。

図 4-22 に、埋戻土の液状化強度試験箇所及び敷地内調査孔のN値、細粒分含有率 Fc の深度分布を示す。また、図中には、液状化強度試験箇所及び敷地内調査孔の各々の値の平均、平均 $\pm 1\,\sigma$ の値を表記している。液状化強度試験箇所近傍の平均N値、平均細粒分含有率 Fc は、敷地内調査孔の平均値 $\pm 1\,\sigma$ の範囲内にある。

以上より、埋戻土の液状化強度試験箇所は、粒度分布、 $N値及び細粒分含有率Fcが敷地内調査孔の平均値<math>\pm 1\sigma$ の範囲内であることから、敷地内の埋戻土に対して代表性及び網羅性を有していることを確認した。




図 4-20 埋戻土の液状化強度試験箇所及び敷地内調査孔

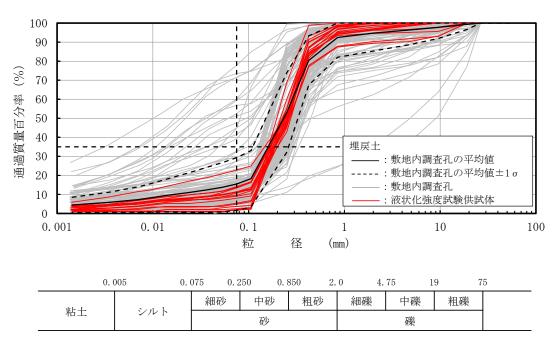



図 4-21 埋戻土の液状化強度試験供試体と敷地内調査孔の粒度試験結果

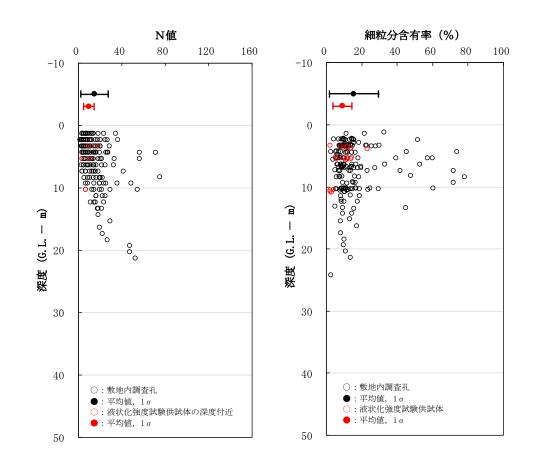



図 4-22 液状化強度試験箇所及び敷地内調査孔のN値, 細粒分含有率 Fc の比較 (埋戻土)

## (b) 新期砂層

新期砂層は、敷地の南側と北側に分布する。図 4-23 に、新期砂層の液状化強度試験箇所及び敷地内調査孔の位置を示す。

図 4-24 に、液状化強度試験箇所及び敷地内調査孔における新期砂層の粒径加積曲線を示す。敷地内の新期砂層は粒径が概ね均一な砂が主体であり、ばらつきは小さい。液状化強度試験箇所の粒度分布は、概ね敷地内調査箇所の平均値±1  $\sigma$  の範囲内に入っている。

図 4-25 に、新期砂層の液状化強度試験箇所及び敷地内調査孔のN値、細粒分含有率 Fc の深度分布を示す。また、図中には、液状化強度試験箇所及び敷地内調査孔の各々の値の平均、平均±1 σ の値を表記している。液状化強度試験箇所近傍の平均N値、平均細粒分含有率 Fc は、敷地内調査孔の平均値±1 σ の範囲内にある。

以上より,新期砂層の液状化強度試験箇所は,粒度分布,N値及び細粒分含有率 Fc が敷地内調査孔の平均値±1σの範囲内であることから,敷地内の新期砂層に対して代表性及び網羅性を有していることを確認した。

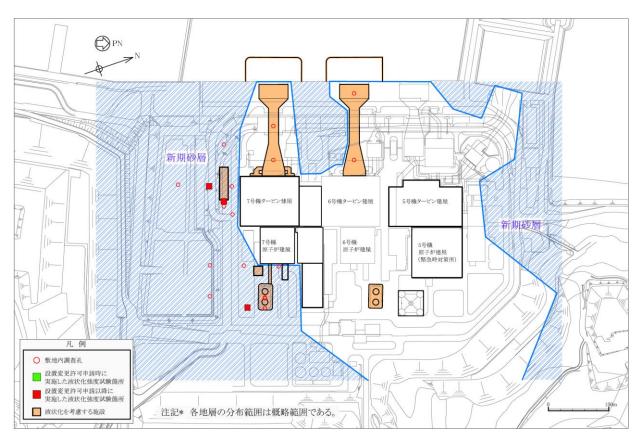



図 4-23 新期砂層の液状化強度試験箇所及び敷地内調査孔

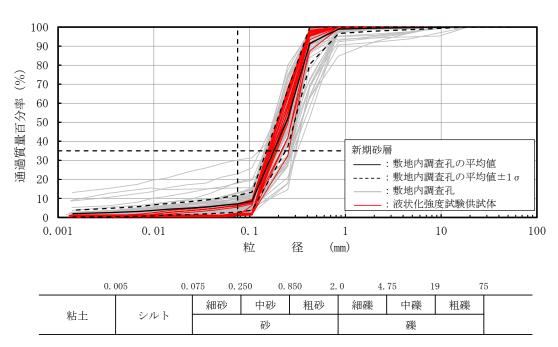



図 4-24 新期砂層の液状化強度試験供試体と敷地内調査孔の粒度試験結果

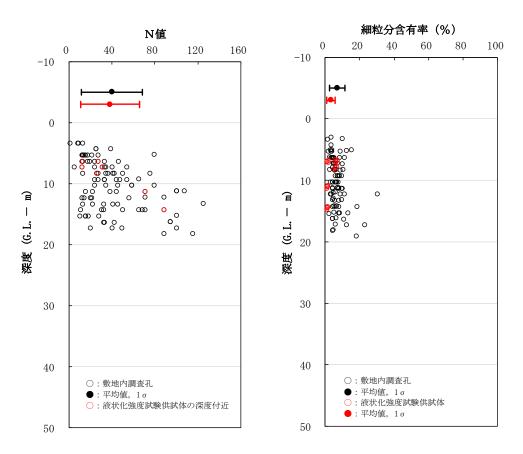



図 4-25 液状化強度試験箇所及び敷地内調査孔のN値, 細粒分含有率 Fc の比較 (新期砂層)

### (c) 沖積層上部(砂質)

沖積層上部(砂質)は,敷地の南東側に分布する。図 4-26 に,沖積層上部(砂質)の液状化強度試験箇所及び敷地内調査孔の位置を示す。

図 4-27 に、液状化強度試験箇所及び敷地内調査孔における沖積層上部(砂質)の 粒径加積曲線を示す。敷地内の沖積層上部(砂質)は、砂〜粘土までの広い粒度分布 を示し、ばらつきは比較的大きい。液状化強度試験箇所の粒度分布は、概ね敷地内調 査箇所の平均値±1  $\sigma$  の範囲内に入っている。

図 4-28 に、沖積層上部(砂質)の液状化強度試験箇所及び敷地内調査孔のN値、細粒分含有率 Fc の深度分布を示す。また、図中には、液状化強度試験箇所及び敷地内調査孔の各々の値の平均、平均±1 σ の値を表記している。

液状化強度試験箇所のN値は、敷地内調査孔よりも若干大きい傾向を示している。液状化強度試験箇所の細粒分含有率 Fc は、敷地内調査孔の $1\sigma$  のばらつきの範囲内にあり、平均値よりも小さい。敷地内調査孔よりも液状化強度試験箇所のN値が大きめに現れた要因としては、供試体は採取コアの中でも砂分が主体的な箇所を選定しているため、シルト分の割合が高い箇所と比べてN値が比較的大きくなったことが考えられる。図 4-29 に、細粒分含有率 Fc とN値の関係を示す。沖積層上部(砂質)のN値は、細粒分含有率 Fc が小さいほど大きくなる傾向を示している。

以上より、沖積層上部(砂質)の液状化強度試験箇所は、平均N値が若干大きいものの、粒度分布及び細粒分含有率Fcが敷地内調査孔の平均値 $\pm 1\sigma$ の範囲内であることから、敷地内の沖積層上部(砂質)に対して代表性及び網羅性を有していることを確認した。

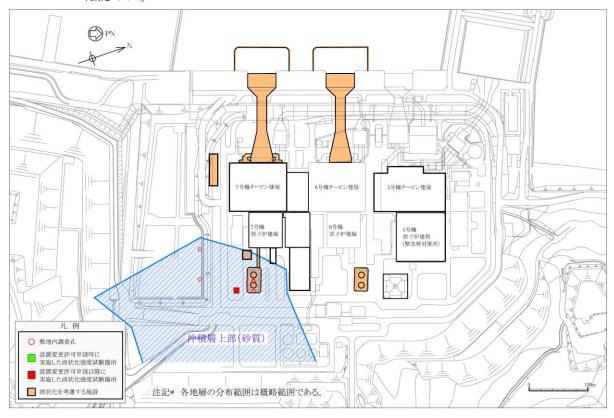



図 4-26 沖積層上部(砂質)の液状化強度試験箇所及び敷地内調査孔

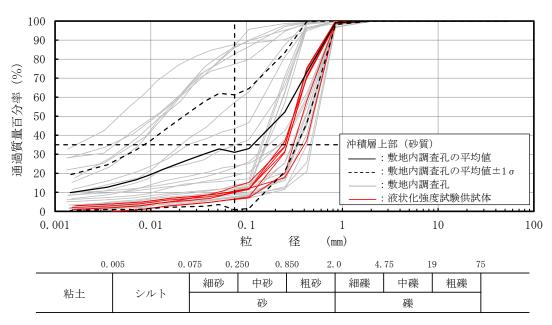



図 4-27 沖積層上部(砂質)の液状化強度試験供試体と敷地内調査孔の粒度試験結果

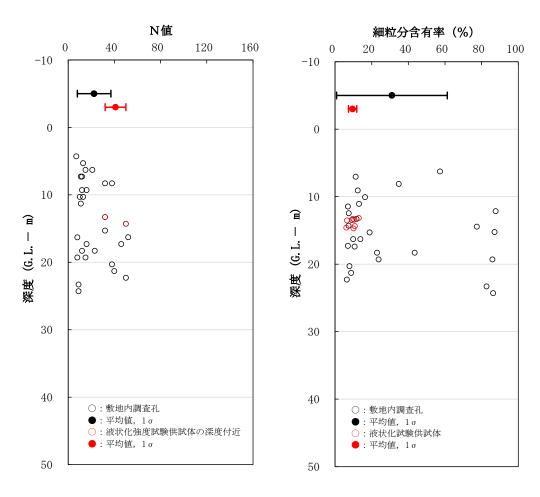



図 4-28 液状化強度試験箇所及び敷地内調査孔のN値,細粒分含有率 Fc の比較 (沖積層上部 (砂質))

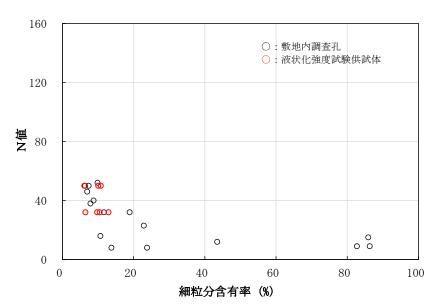



図 4-29 液状化強度試験箇所及び敷地内調査孔の細粒分含有率 Fc と N値の関係 (沖積層上部(砂質))

## (d) 沖積層下部

沖積層下部は、敷地の南側に分布する。図 4-30 に、沖積層下部の液状化強度試験 箇所及び敷地内調査孔の位置を示す。

図 4-31 に、液状化強度試験箇所及び敷地内調査孔における沖積層下部の粒径加積 曲線を示す。敷地内の沖積層下部は、砂を主体とした粒度分布を示し、ばらつきは小 さい。液状化強度試験箇所の粒度分布は、概ね敷地内調査箇所の平均値±1 σ の範囲内 に入っている。

図 4-32 に、沖積層下部の液状化強度試験箇所及び敷地内調査孔のN値、細粒分含有率 Fc の深度分布を示す。また、図中には、液状化強度試験箇所及び敷地内調査孔の各々の値の平均、平均±1 σ の値を表記している。

液状化強度試験箇所のN値は,敷地内調査孔よりも若干大きい傾向を示している。液状化強度試験箇所の細粒分含有率 Fc は,敷地内調査孔の $1\sigma$  のばらつきの範囲内にあり,平均値よりも小さい。敷地内調査孔よりも液状化強度試験箇所のN値が大きめに現れた要因としては,供試体は採取コアの中でも砂分が主体的な箇所を選定しているため,シルト分の割合が高い箇所と比べてN値が比較的大きくなったことが考えられる。図 4-33 に,細粒分含有率 Fc とN値の関係を示す。沖積層下部のN値は,細粒分含有率 Fc が小さいほど大きくなる傾向を示している。

以上より、沖積層下部の液状化強度試験箇所は、平均N値は若干大きいものの、粒度分布及び細粒分含有率 Fc は敷地内調査孔の平均値±1  $\sigma$  の範囲内であることから、敷地内の沖積層下部に対して代表性及び網羅性を有していることを確認した。

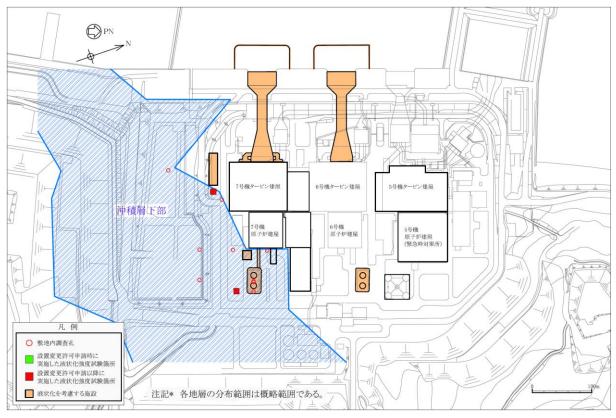



図 4-30 沖積層下部の液状化強度試験箇所及び敷地内調査孔

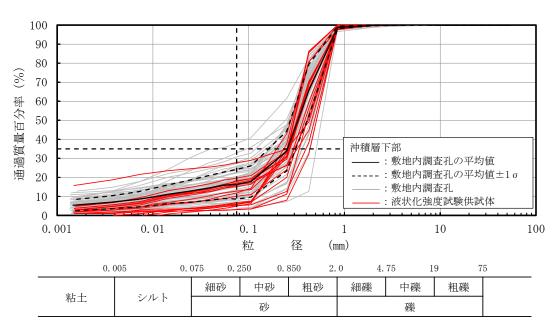



図 4-31 沖積層下部の液状化強度試験供試体と敷地内調査孔の粒度試験結果

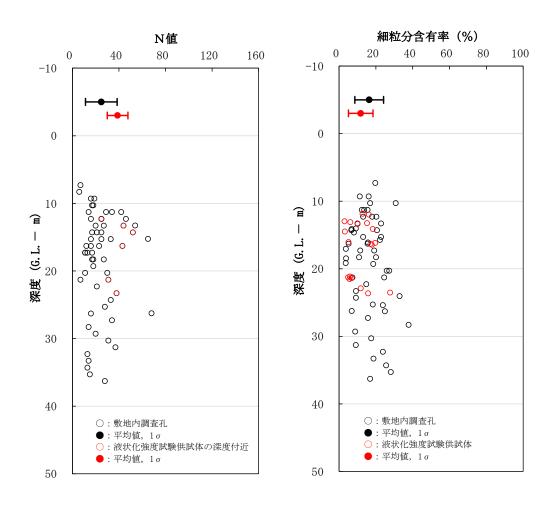



図 4-32 液状化強度試験箇所及び敷地内調査孔のN値, 細粒分含有率 Fc の比較 (沖積層下部)

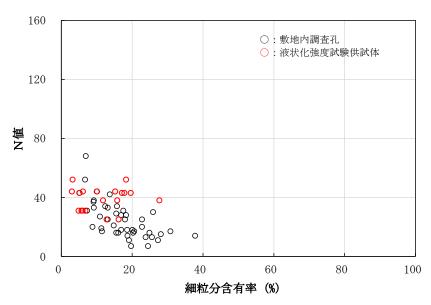



図 4-33 液状化強度試験箇所及び敷地内調査孔の細粒分含有率 Fc と N値の関係 (沖積層下部)

#### (e) 古安田層(A2s 層)

古安田層(A2s 層) は、原子炉建屋やタービン建屋周辺以外の敷地に広く分布する。 図 4-34 に、古安田層(A2s 層)の液状化強度試験箇所及び敷地内調査孔の位置を示す。

図 4-35 に、液状化強度試験箇所及び敷地内調査孔における古安田層(A2s 層)の粒径加積曲線を示す。敷地内の古安田層(A2s 層)は、礫~シルトまでの広い粒度分布を示し、ばらつきは大きい。液状化強度試験箇所の粒度分布は、概ね敷地内調査箇所の平均値 $\pm 1\,\sigma$ の範囲内に入っている。

図 4-36 に、古安田層(A2s 層)の液状化強度試験箇所及び敷地内調査孔のN値、細粒分含有率 Fc、及びN値を示す。また、図中には、液状化強度試験箇所及び敷地内調査孔の各々の値の平均、平均±1 σの値を表記している。

液状化強度試験箇所のN値は,敷地内調査孔よりも若干大きい傾向を示している。液状化強度試験箇所の細粒分含有率 Fc は,敷地内調査孔の $1\sigma$  のばらつきの範囲内にあり,平均値よりも小さい。敷地内調査孔よりも液状化強度試験箇所のN値が大きめに現れた要因としては,供試体は採取コアの中でも砂分が主体的な箇所を選定しているため,シルト分の割合が高い箇所と比べてN値が比較的大きくなったことが考えられる。図 4-37 に,細粒分含有率 Fc とN値の関係を示す。古安田層 (A2s 層)のN値は,細粒分含有率 Fc が小さいほど大きくなる傾向を示している。

以上より, 古安田層(A2s 層) の液状化強度試験箇所は, 粒度分布, N値及び細粒分含有率 Fc が敷地内調査孔の平均値±1σの範囲内であることから, 敷地内の古安田層(A2s 層) に対して代表性及び網羅性を有していることを確認した。

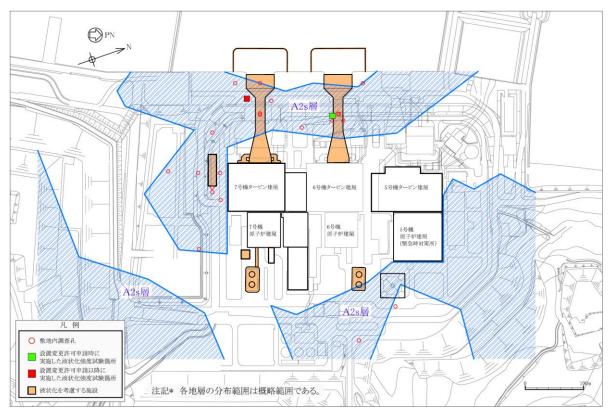



図 4-34 古安田層(A2s 層)の液状化強度試験箇所及び敷地内調査孔

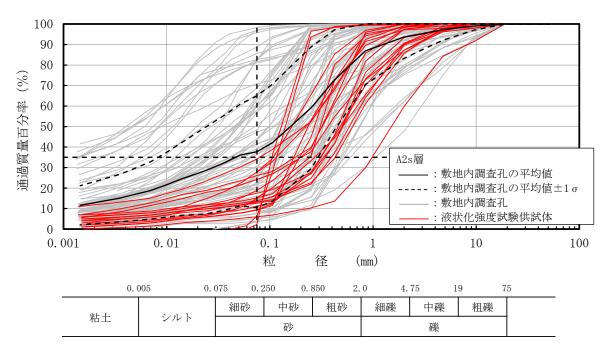



図 4-35 古安田層 (A2s 層) の液状化強度試験供試体と敷地内調査孔の粒度試験結果

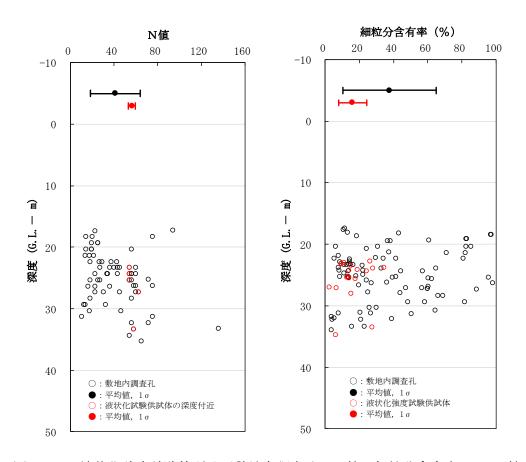



図 4-36 液状化強度試験箇所及び敷地内調査孔のN値, 細粒分含有率 Fc の比較 (古安田層 (A2s 層))

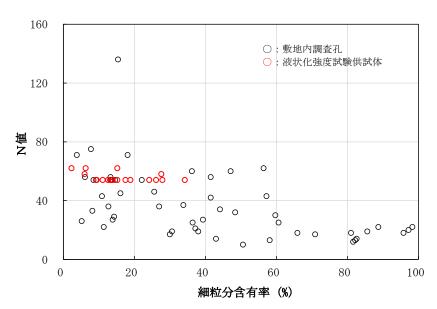



図 4-37 液状化強度試験箇所及び敷地内調査孔の細粒分含有率 Fc と N値の関係 (古安田層 (A2s 層))

#### (8) 有効応力解析に用いる地盤の液状化強度特性の保守性

有効応力解析に用いる地盤の液状化強度特性は、地盤のばらつきを踏まえて保守的に評価されるように設定する。具体的には、液状化強度試験から得られる液状化抵抗曲線に対して、解析上再現される液状化抵抗曲線を低く設定することにより考慮する。(液状化抵抗曲線を試験結果より低く設定することは、有効応力解析において試験結果より繰返し回数が少ない状態で同程度のひずみが発生することを意味している。)

柏崎刈羽原子力発電所では、設置変更許可申請から追加の液状化強度試験、室内試験及び地盤調査を実施している。地盤の液状化強度特性は、試験結果から得た液状化抵抗曲線に対し、最小二乗法による液状化抵抗曲線の回帰曲線を設定し、その回帰係数の自由度を考慮した不偏分散に基づく標準偏差 $\sigma$ を用いて、液状化抵抗曲線の「回帰曲線 $-1\sigma$ 」にて設定する。解析上考慮する液状化抵抗曲線は、この「回帰曲線 $-1\sigma$ 」に対して同等となるように設定することを基本とする。なお、回帰曲線の設定に関する詳細は、(参考資料4)に示す。

#### (9) 液状化強度試験結果

図 4-38~図 4-42 に地層毎の液状化強度試験から得た液状化抵抗曲線を示す。なお、地層毎の代表的な液状化強度試験の詳細(せん断ひずみ時刻歴、過剰間隙水圧時刻歴等)を(参考資料3)に、全供試体の液状化強度試験の詳細については、KK7 補足-024-1(別冊)「地盤の支持性能 資料集」に示す。

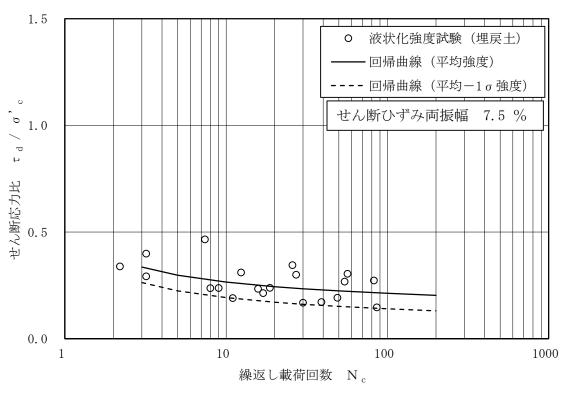



図 4-38 埋戻土の液状化強度試験結果

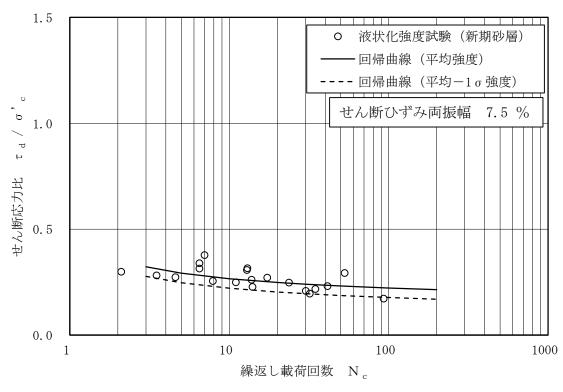



図 4-39 新期砂層の液状化強度試験結果

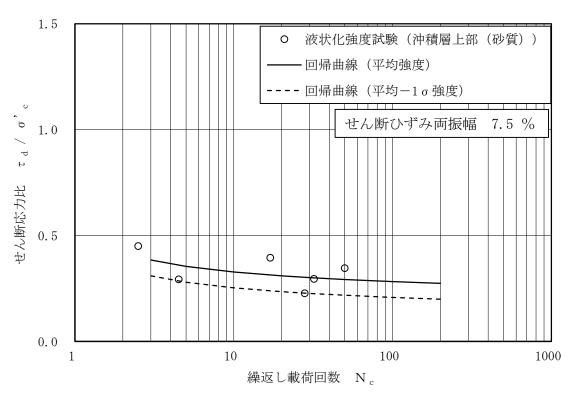



図 4-40 沖積層上部(砂質)の液状化強度試験結果

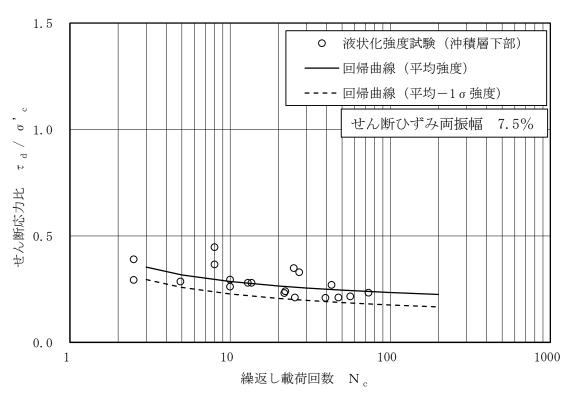



図 4-41 沖積層下部の液状化強度試験結果

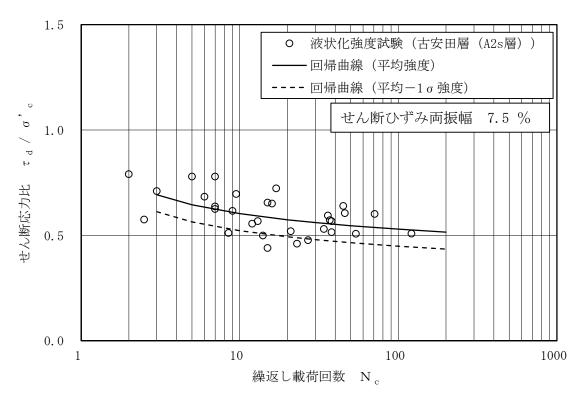



図 4-42 古安田層 (A2s 層) の液状化強度試験結果

- (10) 有効応力解析の液状化パラメータの設定方針
  - a. 有効応力解析コードFLIPについて

有効応力解析コード「FLIP (Finite element analysis of Liquefaction Program)」は、1988年に運輸省港湾技術研究所(現、(国研)港湾空港技術研究所)において開発された平面ひずみ状態を対象とする有効応力解析法に基づく 2 次元地震応答解析プログラムである。FLIPの主な特徴として、以下の 5 点が挙げられる。

- ① 有限要素法に基づくプログラムである。
- ② 平面ひずみ状態を解析対象とする。
- ③ 地盤の有効応力の変化を考慮した地震応答解析を行い、部材の断面力や変形量を計算 する。
- ④ 土の応力-ひずみモデルとして多重せん断モデルを採用している。
- ⑤ 有効応力の変化は有効応力法により考慮する。そのために必要な過剰間隙水圧算定モ デルとして井合モデルを用いている。

砂の変形特性を規定する多重せん断モデルは、任意方向のせん断面において仮想的な単純せん断バネの作用があるものとし、これらのせん断バネの作用により、土全体のせん断抵抗が発揮されるものである。土の応力ーひずみ関係は、このせん断バネの特性によって種々の表現が可能であるが、「FLIP」では双曲線(Hardin-Drnevich)型モデルを適用している。また、履歴ループについては、その大きさを任意に調整可能なように拡張した Masing 則を用いている。図 4-43 に多重せん断モデルの概念図を、図 4-44 に排水条件での土の応力ーひずみ関係の概念図を示す。

また、FLIPは、液状化に至る緩い砂からサイクリックモビリティ*1を示す密な砂の挙動を適切に表現できる解析コード*2である。本地点の液状化検討対象層の多くはサイクリックモビリティの状態を示しており、FLIPは本地点に対して適用性があると判断できる。

- 注記*1:サイクリックモビリティとは、繰返し載荷において土が「繰返し軟化」する過程で、限られたひずみ範囲ではせん断抵抗が小さくなっても、ひずみが大きく成長しようとすると、正のダイレタンシー特性のためにせん断抵抗が急激に作用し、せん断ひずみの成長に歯止めがかかる現象。主に、密な砂や礫質土、過圧密粘土のように正のダイレタンシー特性が著しい土において顕著に表れる。
  - *2 : Iai, S., Matsunaga, Y. and Kameoka, T. (1992) : Strain space plasticity model for cyclic mobility, Soils and Foundations, Vol. 32, No. 2, pp.1-15.

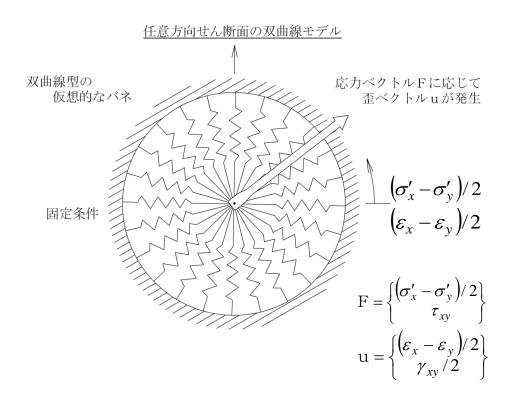



図 4-43 多重せん断モデルの概念図 (港湾技研資料 No869) *

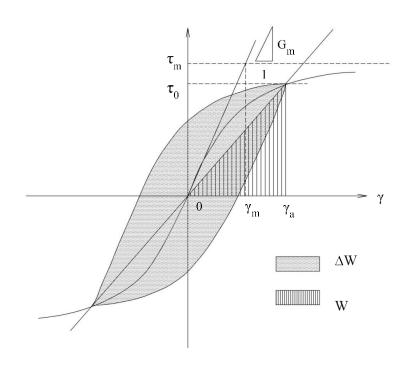
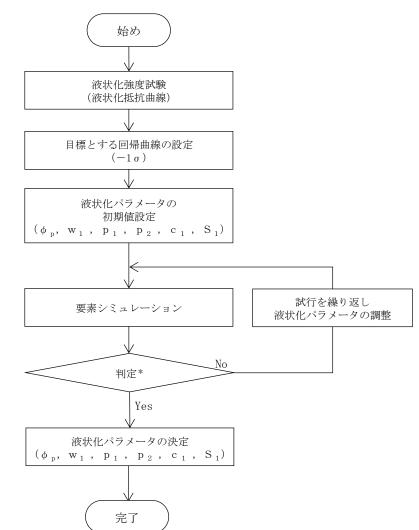



図 4-44 排水条件での土の応力-ひずみ関係の概念図 (港湾技研資料 No869) *注記*:森田年一,井合進, HanlongLiu,一井康二,佐藤幸博:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法,港湾技術研究所資料, No. 869, 1997.


### b. 解析パラメータの設定方針

有効応力解析コードFLIPでは、動的変形特性を規定するパラメータと、過剰間隙水圧の発生を規定するパラメータを設定する必要がある(本資料では液状化特性を規定するパラメータを『液状化パラメータ』という)。有効応力解析コードFLIPにおける解析パラメータを表 4-34 に示す。このうち、液状化パラメータは、液状化検討対象層にのみ設定する。

液状化パラメータは、要素シミュレーションを実施し、これより得られる解析上の液状化抵抗曲線が、(9) の液状化強度試験から得た液状化抵抗曲線(回帰曲線 $-1\sigma$ )に対して同等になるように設定する。図 4-45 に、液状化パラメータの設定フローを示す。図 4-46~図 4-50 に、地層ごとに設定した要素シミュレーション上の液状化抵抗曲線を示す。なお、有効応力解析に用いる解析用物性値の適用性については、(参考資料 5)に示す。

表 4-34 FLIPにおいて必要となる解析パラメータ

分類	解析パラメータ			
	G _{ma}	動せん断弾性係数( $\sigma_{m}'=\sigma_{ma}$ における値)		
動的変	$K_{\mathtt{ma}}$	体積弾性係数( $\sigma_{m}'=\sigma_{ma}$ における値)		
形特性	$\phi_{ m f}$	内部摩擦角		
	h max	履歴減衰の上限値		
	ф р	変相角		
	$\mathbf{w}_1$	液状化特性全体を規定するパラメータ		
液状化	p 1	液状化特性の前半を規定するパラメータ		
特性	p 2	液状化特性の後半を規定するパラメータ		
	C 1	液状化発生の下限値を規定するパラメータ		
	$S_1$	液状化の終局状態を規定するパラメータ		



注記*:要素シミュレーションで得られる液状化抵抗曲線が、目標とする回帰曲線( $-1\sigma$ )と同等もしくは保守的に設定されているか

図4-45 有効応力解析コードFLIPにおける液状化パラメータの設定フロー

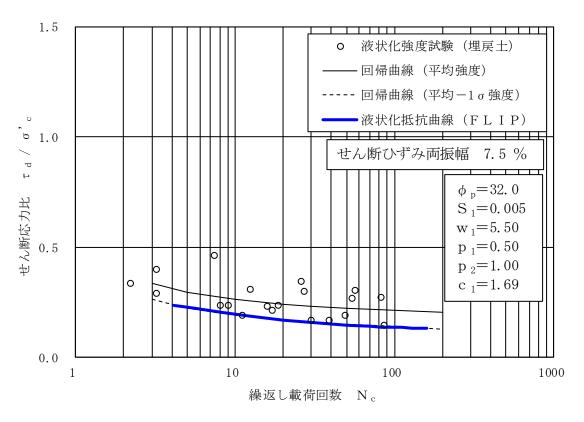



図 4-46 液状化抵抗曲線(埋戻土)

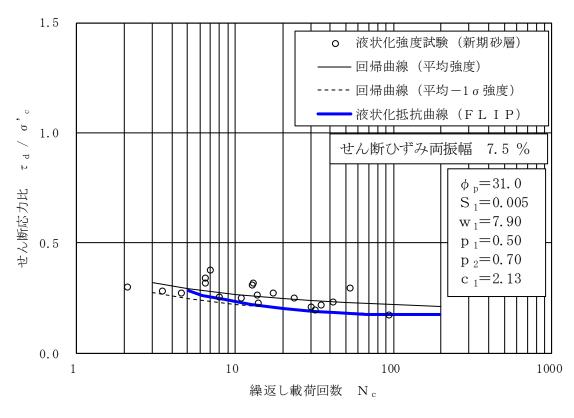



図 4-47 液状化抵抗曲線 (新期砂層)

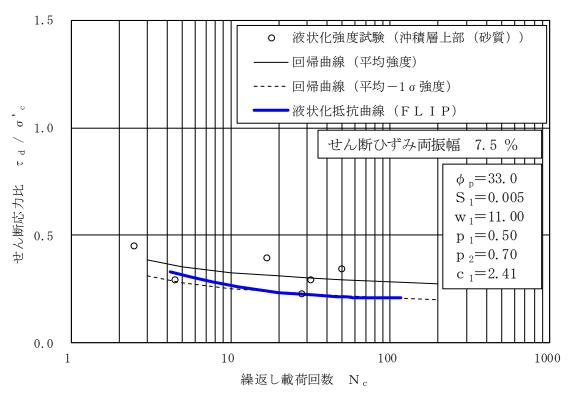



図 4-48 液状化抵抗曲線(沖積層上部(砂質))

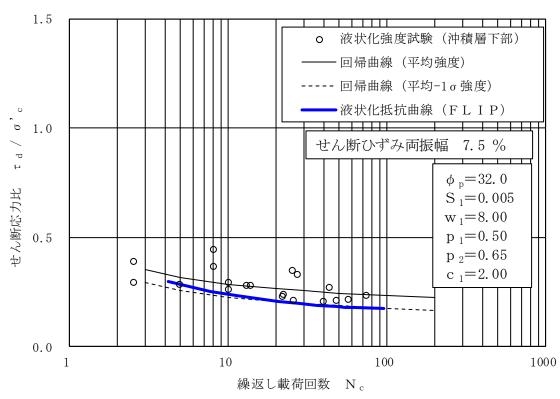



図 4-49 液状化抵抗曲線(沖積層下部)

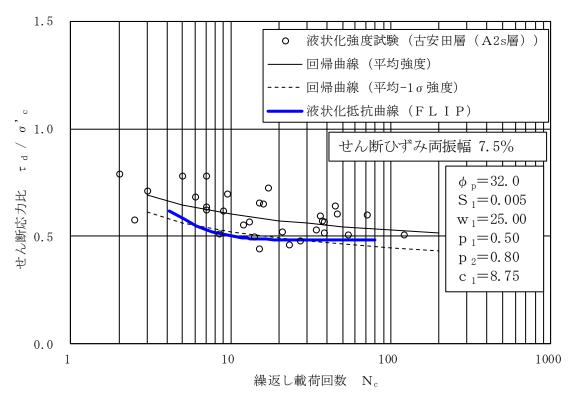



図 4-50 液状化抵抗曲線(古安田層(A2s 層))

#### (11) 液状化判定に係る評価基準値について

有効応力解析での地震応答解析結果により算出される各地盤要素の間隙水圧に対し、 液状化の定義を明確にした上で、評価基準値を以下のように設定し、液状化判定を行う。 レベル2地震動による液状化研究小委員会活動成果報告(土木学会、2003)では、地盤 の液状化の事象の定義として、以下のように記載されている。

▶ 地震の繰り返しせん断力などによって、飽和した砂や砂礫などの緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、有効応力がゼロまで低下し液体状となり、その後の地盤の流動を伴う現象。

液状化判定の評価基準値を設定するにあたり、規格・基準における液状化と過剰間隙 水圧に対する記載事例を調査した。地盤材料試験の方法と解説(地盤工学会,2009)では、 液状化と関連する過剰間隙水圧について、以下のように記載されている。

ト 各繰り返しサイクルにおける過剰間隙水圧  $\Delta$  u の最大値が有効拘束圧  $\sigma$   $\sigma$   $\sigma$  95% になった時の繰り返し回数 N_{u95} を求める。(土の液状化強度特性を求めるための繰り返し非排水三軸試験(pp. 703~749))

これらの知見を踏まえて、過剰間隙水圧を指標とした液状化の評価基準値について、 "液状化の定義"及び"規格・基準における記載事例"に基づき、以下のように設定する。

(液状化の判定)

・過剰間隙水圧 $\Delta$ uの最大値が有効拘束圧 $\sigma_0$ 0 95%に達した状態

#### 4.2.3 その他の解析用物性値

#### (1) 地盤改良体

地盤改良体の物性値の設定は、施工の段階に応じて設定する。以下、竣工後の地盤改良体を既設地盤改良体、施工中又は計画中の地盤改良体を新設地盤改良体と称する。なお、全応力解析、有効応力解析に関わらず地盤改良体の解析用物性値の設定の基本方針は同一である。

地盤改良体の詳細(概要,施工方法,解析用物性値の設定,新設地盤改良体の品質確認 方針,地盤改良体のばらつきの考え方)については(参考資料6)に示す。

#### (a) 既設地盤改良体

既設地盤改良体のうち,高圧噴射攪拌工法,置換工法,機械攪拌工法,改良盛土(以下,これらを総称して「既設地盤改良体(セメント改良)」という。)の解析用物性値は,既設地盤改良体の原位置試験及び室内試験結果に基づき設定する。

既設地盤改良体(土質安定処理土)の解析用物性値は,文献(第2版流動化処理土利用技術マニュアル,独立行政法人土木研究所,平成19年)及び既設地盤改良体(セメント改良)の試験結果に基づき設定する。

上記より, 既設地盤改良体については, 表 4-5 のとおり解析用物性値を設定する。

#### (b) 新設地盤改良体

新設地盤改良体のうち,高圧噴射攪拌工法,置換工法(以下,これらを総称して「新設地盤改良体(セメント改良)」という。)の解析用物性値は,S波速度や一軸圧縮強度に関しては設計値に基づき設定し、その他の解析用物性値は文献(「改訂版 建築物のための改良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工法一、日本建築センター、平成14年11月」)を参考に設定する。

ただし、近傍に既設地盤改良体(セメント改良)があり、その地盤条件・施工方法・設計強度が同一のものである場合は、近傍の既設地盤改良体(セメント改良)の解析用物性値を設定する。

新設地盤改良体 (無筋コンクリート) の解析用物性値は,文献(コンクリート標準示方書 構造性能照査編,社団法人土木学会,2002年)に基づき設定する。

上記より、新設地盤改良体については、表 4-6、表 4-7 のとおり解析用物性値を設定する。

#### (2) 西山層及びマンメイドロック

有効応力解析における西山層及びマンメイドロックの解析用物性値は,設置変更許可申請書に記載された調査・試験結果に基づき,有効応力解析において必要となるパラメーターを設定する。

## 4.2.4 地盤の物性のばらつきについて

- (1) 建物・構築物の地震応答解析に考慮する地盤の物性のばらつき 建物・構築物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細に ついては、(参考資料4)に示す。
- (2) 土木構造物の地震応答解析に考慮する地盤の物性のばらつき 土木構造物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細に ついては、(参考資料4)に示す。

#### 5. 極限支持力

極限支持力度は、建物・構築物においては、建築基準法及び同施行令、基礎指針の支持力算定式に基づき設定し、土木構造物においては、道路橋示方書 I・IVの支持力算定式に基づき設定することを基本とする。

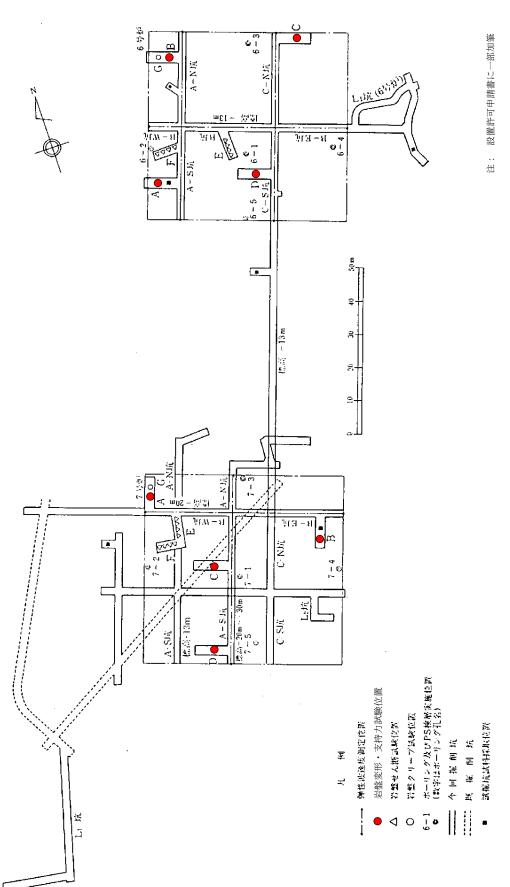
### 5.1 基礎地盤(西山層)の極限支持力度

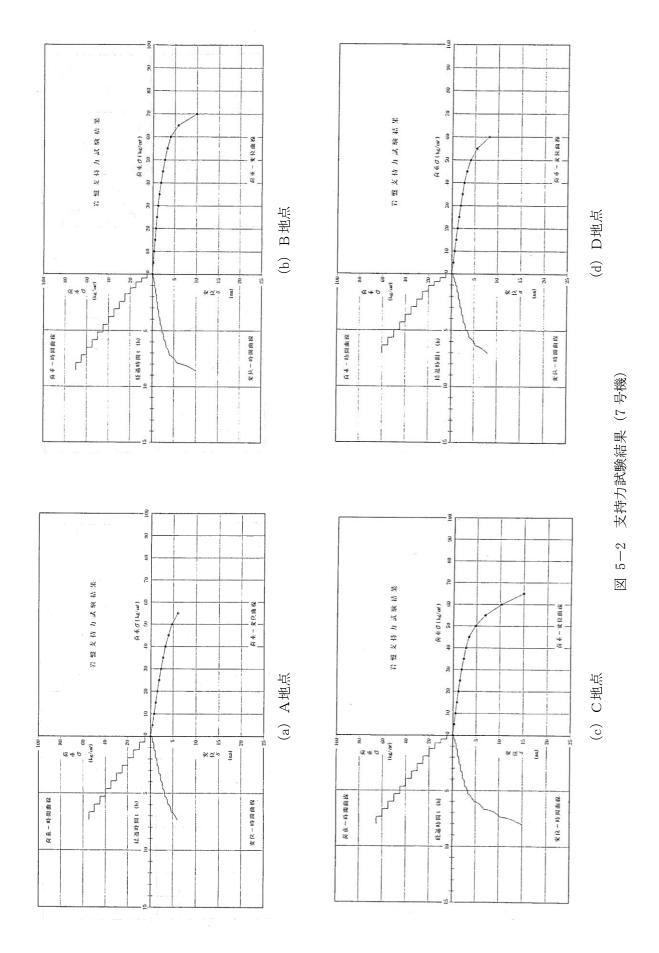
基礎地盤(西山層)の極限支持力度を表 5-1 に示す。

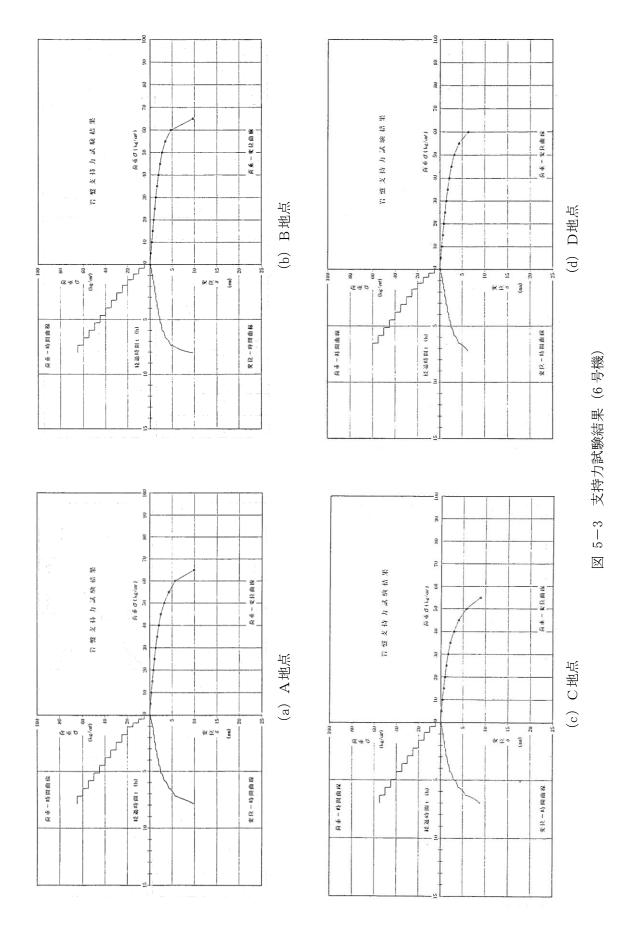
基礎地盤(西山層)の極限支持力度は、設置変更許可申請書(添付資料六)に記載の値を 用いることとする。設置変更許可申請書(添付資料六)に記載された支持力試験の結果を表 5-2に、支持力試験位置を図 5-1に、支持力試験結果例を図 5-2及び図 5-3に示す。

なお、マンメイドロックについては、西山層と同等以上の力学特性を有することから、西山層の極限支持力度を適用する。マンメイドロックの設計の考え方については、(参考資料 9) に示す。

表 5-1 基礎地盤(西山層)の極限支持力度


岩種	号機	極限支持力度* (kN/m²)
五八日	7号機	6. $17 \times 10^3$
西山層	6 号機	$5.98 \times 10^3$


注記*:設置変更許可申請書(添付資料六)の値を SI 単位系に変換


表 5-2 設置変更許可申請書に記載された支持力試験結果

号	討	験位置	上限降伏值	最大荷重	
炉	地点	標高(m)	$(kg/cm^2)$	$(kg/cm^2)$	
	A -13		42	65	
6	В	-13	43	65	
号炉	С	-13	36	55	
炉	D	-13	43	60	
		平均	41	61	
	Α	-20	39	55	
7	В	-20	48	70	
7 号 炉	С	-25	44	65	
	D	-29	43	60	
		平均	44	63	









## 5.2 直接基礎の支持力算定式

### (1) 建物·構築物

・ 平板載荷試験結果 (建築基準法及び同施行令) による極限支持力算定式

$$q_u=3 \cdot q_a=3 \cdot q_t+N' \cdot \gamma_2 \cdot D_f$$
  
 $\subset \subset \mathcal{C}$ ,

qu:極限支持力度(kN/m²)

q a: 長期に生じる力に対する地盤の許容応力度(kN/m²)

 $q_t$ : 平板載荷試験による降伏荷重度の 1/2 の数値又は極限応力度の 1/3 の数値の うちいずれか小さい数値  $(kN/m^2)$ 

N': 基礎荷重面下の地盤の種類に応じて次の表に掲げる係数

	地盤の種類				
係数	密実な砂質地盤	砂質地盤 (密実なものを除く。)	粘土質地盤		
N'	12	6	3		

γ2: 基礎荷重面より上方にある地盤の平均単位体積重量又は水中単位体積重量 (kN/m³)

D_f: 基礎に近接した最低地盤面から基礎荷重面までの深さ(m)

・建築基準法及び同施行令による極限支持力算定式

 $\begin{array}{l} q_u = 3 \cdot q_a = i_c \cdot \alpha \cdot c \cdot N_c + i_{\gamma} \cdot \beta \cdot \gamma_1 \cdot B \cdot N_{\gamma} + i_{q} \cdot \gamma_2 \cdot D_f \cdot N_q \\ \subset \subset \mathcal{C}, \end{array}$ 

q u:極限支持力度(kN/m²)

q a:長期に生じる力に対する地盤の許容応力度(kN/m²)

 $i_c$ ,  $i_\gamma$ ,  $i_q$ : 基礎に作用する荷重の鉛直方向に対する傾斜角に応じて次の式に よって計算した数値

$$i_{c} = i_{g} = (1 - \theta / 90)^{2}, \quad i_{y} = (1 - \theta / \phi)^{2}$$

これらの式において、 θ 及び φ は、 それぞれ次の数値を表すものとする。

 $\theta$ :基礎に作用する荷重の鉛直方向に対する傾斜角( $\theta$ が $\phi$ を超える場合は、 $\phi$ とする。)(°)

φ:地盤の特性によって求めた内部摩擦角(°)

α,β:基礎荷重面の形状に応じて次の表に掲げる係数

係数	基礎荷重面の形状			
/ / / / / / / / / / / / / / / / / / /	円形	円形以外の形状		
α	1. 2	1.0+0.2 · B/L		
β	0.3	0.5-0.2 · B/L		

この表において、B及びLは、それぞれの基礎荷重面の短辺又は短径及び長辺又は長径の長さ(m)を表すものとする。

c : 基礎荷重面下にある地盤の粘着力(kN/m²)

B : 基礎荷重面の短辺又は短径(m)

Ν c, Ν γ, Ν g: 地盤内部の摩擦角に応じて次の表に掲げる支持力係数

支持力係数	内部摩擦角									
	0°	5°	10°	15°	20°	25°	28°	32°	36°	40°以上
N _c	5. 1	6. 5	8.3	11. 0	14.8	20. 7	25. 8	35. 5	50.6	75. 3
Nγ	0	0. 1	0.4	1. 1	2. 9	6.8	11. 2	22. 0	44. 4	93. 7
N q	1.0	1.6	2.5	3. 9	6. 4	10. 7	14. 7	23. 2	37.8	64. 2

この表に掲げる内部摩擦角以外の内部摩擦角に応じた $N_{\rm o}$ ,  $N_{\rm v}$ 及び $N_{\rm q}$ は、表に掲げる数値をそれぞれ直線的に補間した数値とする。

γ₁: 基礎荷重面下にある地盤の単位体積重量又は水中単位体積重量(kN/m³)

γ 2: 基礎荷重面より上方にある地盤の平均単位体積重量又は水中単位体積重量 (kN/m³)

D_f: 基礎に近接した最低地盤面から基礎荷重面までの深さ(m)

### (2) 土木構造物

・道路橋示方書I・IVによる極限支持力算定式

Qu:荷重の偏心傾斜,支持力係数の寸法効果を考慮した地盤の極限支持力(kN)

c : 地盤の粘着力(kN/m²)

q : 上載荷重(kN/m²)で、  $q = \gamma_2 \cdot D_f$ 

A e : 有効載荷面積(m²)

γ₁,γ₂ : 支持地盤及び根入れ地盤の単位体積重量(kN/m³) ただし、地下水位以下では水中単位体積重量を用いる。

 $B_e$ : 荷重の偏心を考慮した基礎の有効載荷幅(m)  $B_e$ = B-2・e_B

B : 基礎幅(m)

e B : 荷重の偏心量(m)

D f : 基礎の有効根入れ深さ(m)

α,β : 基礎の形状係数

κ : 根入れ効果に対する割増係数

N。, N。, N。: 荷重の傾斜を考慮した支持力係数

 $S_c$ ,  $S_q$ ,  $S_\gamma$ : 支持力係数の寸法効果に関する補正係数

### 5.3 杭基礎の支持力算定式

杭基礎の押込み力及び引抜き力に対する支持力評価において、有効応力解析により液状化すると評価された地盤は杭周面摩擦力を支持力として考慮せず、支持力評価を行うことを基本とする。ただし、杭周面地盤に地盤改良体、非液状化層、岩盤がある場合は、その杭周面摩擦力を支持力として考慮する。

杭基礎構造物の支持力算定方法に関する補足を(参考資料7)に示す。

#### (1) 建物・構築物

・基礎指針による極限支持力算定式

(鉛直支持力)

 $R_u = R_p + R_f$ 

ここで,

R u :極限支持力(kN)

R_p:極限先端支持力(kN)

 $R_p = q_p \cdot A_p$ 

q p:極限先端支持力度(kN/m²)

A_D: 杭先端の閉塞断面積(m²)

R_f:極限周面摩擦力(kN)

 $R_{\rm f} = R_{\rm fs} + R_{\rm fc}$ 

R_{fs}:砂質土部分の極限周面摩擦力(kN)

 $R_{fs} = \tau_s \cdot L_s \cdot \phi$ 

τ 。: 砂質土の極限周面摩擦力度(kN/m²)

適用する杭工法に応じて設定

・ 場所打ちコンクリート杭:  $\tau$ s=3.3N (上限N=50)

N: 杭周面における標準貫入試験のN値

L。: 砂質土部分の長さ(m)

φ : 杭の周長(m)

R_{fc}: 粘性土部分の極限周面摩擦力(kN)

 $R_{fc} = \tau_c \cdot L_c \cdot \phi$ 

τ。: 粘性土の極限周面摩擦力度(kN/m²)

適用する杭工法に応じて設定

・ 場所打ちコンクリート杭:  $\tau_c = C_u$  (上限 $C_u = 100 \text{kN/m}^2$ )

C_u: 土の非排水せん断強さ (kN/m²)

L。: 粘性土部分の長さ(m)

## (引抜き抵抗力)

 $R_{TC} = (\Sigma \tau_{sti} \cdot L_{si} + \Sigma \tau_{cti} \cdot L_{ci}) \cdot \phi + W$   $\subset \subset \mathcal{C}$ 

R_{TC}:最大引抜き抵抗力(kN)

φ : 杭の周長(m)

 $au_{
m sti}$ : 砂質土の i 層における杭引抜き時の最大周面摩擦力度で, 押込み時の極限周面摩擦力度の 2/3 とする  $(kN/m^2)$ 

L_{si}:砂質土の i 層における杭の長さ(m)

τ_{cti}: 粘性土の i 層における杭引抜き時の最大周面摩擦力度で, 押込み時の極限周面摩擦力度と同一とする(kN/m²)

L_{ci} : 粘性土の i 層における杭の長さ(m)

W: 杭の自重で、地下水位以下の部分については浮力を考慮する(kN)

# (2) 土木構造物

・道路橋示方書 I ・IV による極限支持力算定式(杭基礎〔中掘り杭,場所打ち杭〕)  $R_u = q_d \cdot A + U \cdot \Sigma L_i \cdot f_i$  ここで,

R u : 地盤から決まる杭の極限支持力(kN)

A : 杭先端面積(m²)

q a : 杭先端における単位面積当たりの極限支持力度(kN/m²) 適用する杭工法及び杭先端の地盤種別に応じて設定

・ 中掘り杭 セメントミルク噴出攪拌方式: q d=200・N (≦10000)

・ 場所打ち杭工法: q d=3・q u

q u : 支持地盤の一軸圧縮強度(kN/m²)

N : 杭先端地盤における標準貫入試験のN値

U : 杭の周長(m)

L: : 周面摩擦力を考慮する層の層厚(m)

f: : 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

・道路橋示方書 I・IVによる極限支持力算定式(杭基礎〔群杭〕)

 $Q_p = A_G \cdot q_d$ ' -W

Qp: 群杭としての杭先端の極限支持力(kN)

A_G: 仮想ケーソン基礎の底面積(m²)

q d': 仮想ケーソン基礎底面地盤の極限支持力度(kN/m²)

W:仮想ケーソン基礎で置き換えられる土の有効重量(kN)

 $Q_f = U_G \cdot \Sigma (L_i \cdot \tau_i)$ 

ここで,

Q_f: 群杭としての周面摩擦力 (kN)

U_G:仮想ケーソン基礎の周長(m)

L_i:フーチング底面から先端支持層までの各層の層厚

τ i:各層の土のせん断抵抗力度層 (kN/m²)

## 6. 地盤の速度構造

## 6.1 入力地震動の設定に用いる地下深部モデル

入力地震動の設定に用いる地下構造モデルについては、解放基盤表面(T. M. S. L. -155m) から解析モデル入力位置をモデル化する。

地下構造モデルの概要を表 6-1 に示す。入力地震動算定の概念図を図 6-1 及び図 6-2 に示す。

表 6-1 入力地震動の策定に用いる地下構造モデル

我も 1 八万地展動の水足に用いる地下構造にケル						
地層	西山層	基盤*				
標高	解析モデル入力位置~ご	T. M. S. L. -155m 以深				
P 波速度V p (m/s)	T. M. S. L. $-6\text{m} \sim -33\text{m}$ T. M. S. L. $-33\text{m} \sim -90\text{m}$ T. M. S. L. $-90\text{m} \sim -136\text{m}$ T. M. S. L. $-136\text{m} \sim -155\text{m}$	$V_{p} = V_{s} \sqrt{\frac{2(1-v_{d})}{1-2v_{d}}}$	1900			
S 波速度V _s (m/s)	T. M. S. L. $-6\text{m} \sim -33\text{m}$ T. M. S. L. $-33\text{m} \sim -90\text{m}$ T. M. S. L. $-90\text{m} \sim -136\text{m}$ T. M. S. L. $-136\text{m} \sim -155\text{m}$	490 530 590 650	720			
動ポアソン比ν d	T. M. S. L. $-6m \sim -33m$ T. M. S. L. $-33m \sim -90m$ T. M. S. L. $-90m \sim -136m$ T. M. S. L. $-136m \sim -155m$	$-33m \sim -90m$ 0. 446 $-90m \sim -136m$ 0. 432				
単位体積重量γ t (kN/m³)	T. M. S. L. $-6\text{m} \sim -33\text{m}$ T. M. S. L. $-33\text{m} \sim -90\text{m}$ T. M. S. L. $-90\text{m} \sim -136\text{m}$ T. M. S. L. $-136\text{m} \sim -155\text{m}$	17. 0 16. 6 17. 3 19. 3	19. 9			
動せん断弾性係数 のひずみ依存特性 $G/G_0\sim\gamma$	1 1+4.10 γ ¹ γ : せん断ひっ	_				
減衰定数(%)の ひずみ依存特性 h~γ	25.00 γ ^{0.940} + γ:せん断ひっ	_				

注記* : 入力地震動作成モデルにおける解放基盤表面以深の半無限地盤

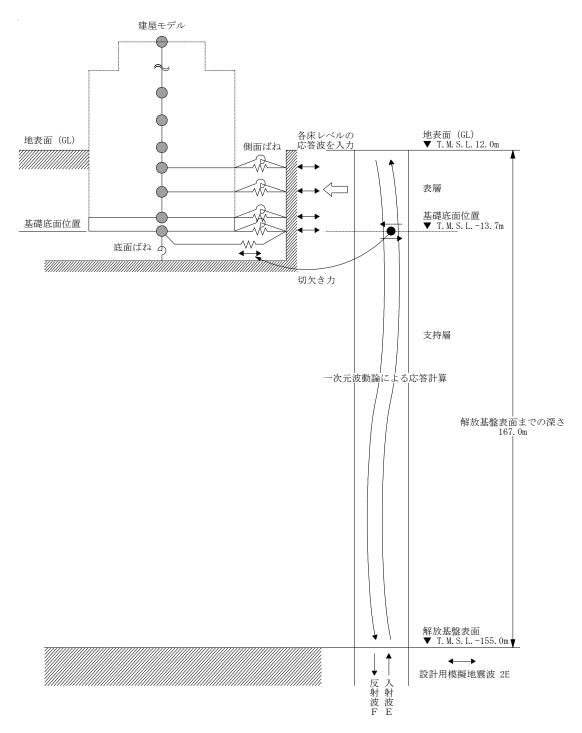



図 6-1 入力地震動算定の概念図 (建物・構築物)

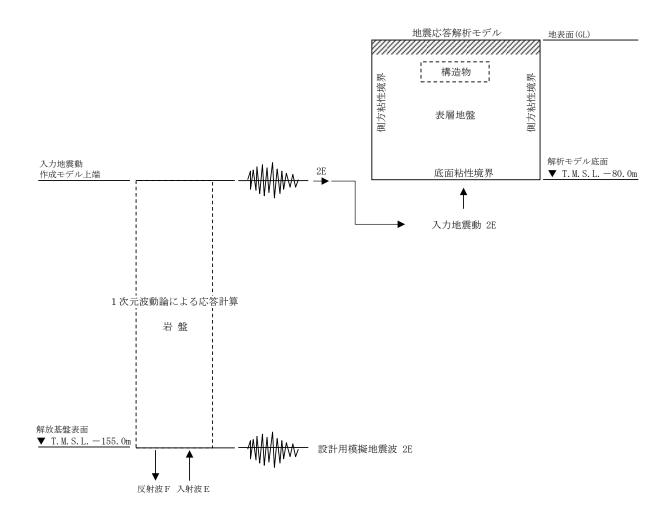



図 6-2 入力地震動算定の概念図(土木構造物)

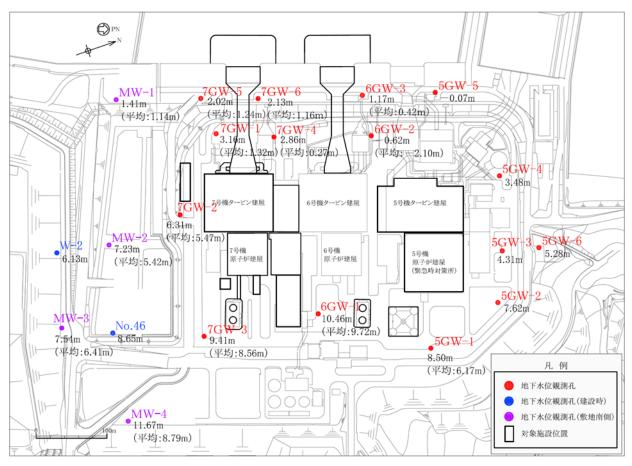
# 6.2 地震応答解析に用いる浅部地盤の解析モデル

地層区分を細分化した解析モデルにおいて設定する地層ごとの P 波速度及び S 波速度は、図 6-3 に示すボーリング孔の位置における PS 検層の結果を基本として設定した。地層ごとの P 波速度及び S 波速度を表 6-2 に示す。

表 6-2 PS 検層結果

		平均値		
地層区分		$V_{\rm s}$	$V_{\mathrm{p}}$	
		(m/s)	(m/s)	
埋戻土	不飽和	213	547	
<b>性</b> 庆工	飽和	213	1600	
埋戻土Ⅱ	飽和	207	1511	
新期砂層	不飽和	246	715	
初粉炒筒	飽和	240	1525	
沖積層上部(シルト質)	飽和	182	1512	
沖積層上部 (砂質)	飽和	256	1597	
沖積層下部	飽和	308	1699	
A3c 層	飽和	253	1515	
A3al 層	飽和	230	1468	
A3s 層	飽和	283	1558	
A2c 層	飽和	278	1566	
A2al 層	飽和	293	1608	
A2s 層	飽和	335	1645	
A2g層(砂質)	飽和	392	1679	
A2g層 (シルト質)	飽和	332	1621	
A1c 層	飽和	312	1684	
A1g 層	飽和	405	1749	

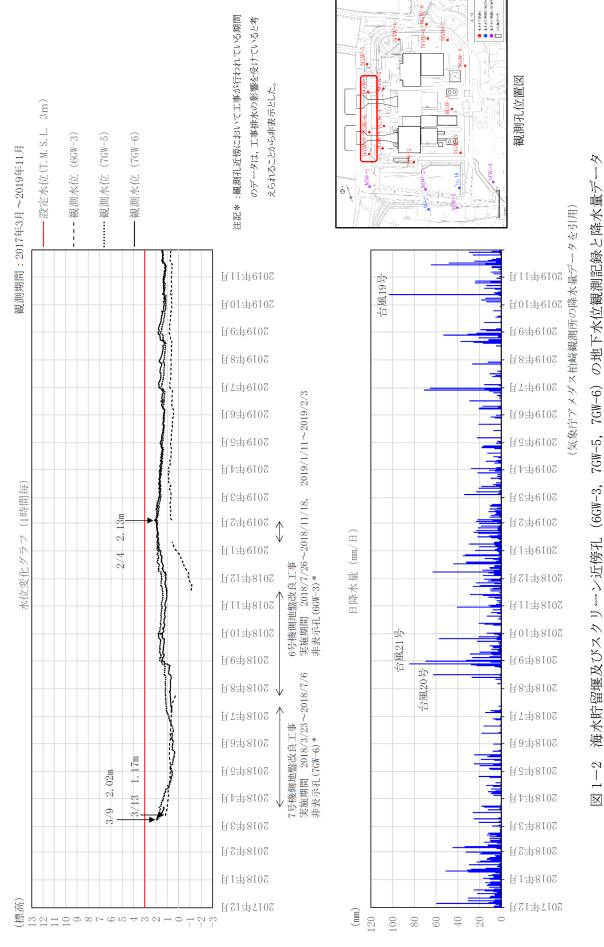
図 6-3 PS 検層実施位置図


地盤の支持性能についての参考資料

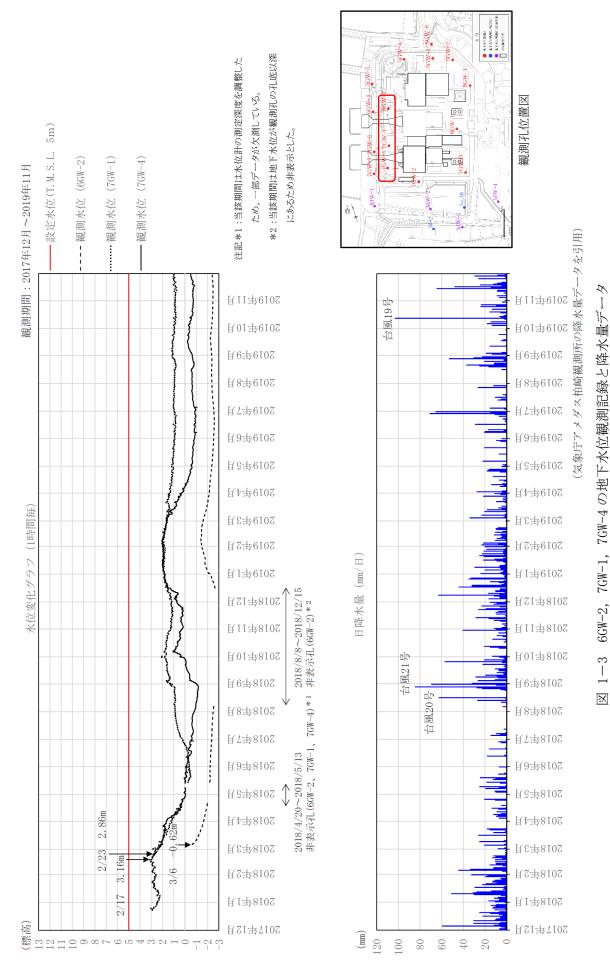
- (参考資料1) 地下水位の詳細について
- (参考資料2)解析用物性値の代用の考え方
- (参考資料3) 液状化強度試験の詳細について
- (参考資料4) 地震応答解析にて考慮する地盤物性のばらつき
- (参考資料5) 有効応力解析に用いる解析用物性値の適用性について
- (参考資料6) 地盤改良体についての補足
- (参考資料7) 杭基礎の支持力評価方法に関する補足
- (参考資料8) 地質区分の詳細について
- (参考資料9) マンメイドロックの設計について

# (参考資料1)地下水位の詳細について

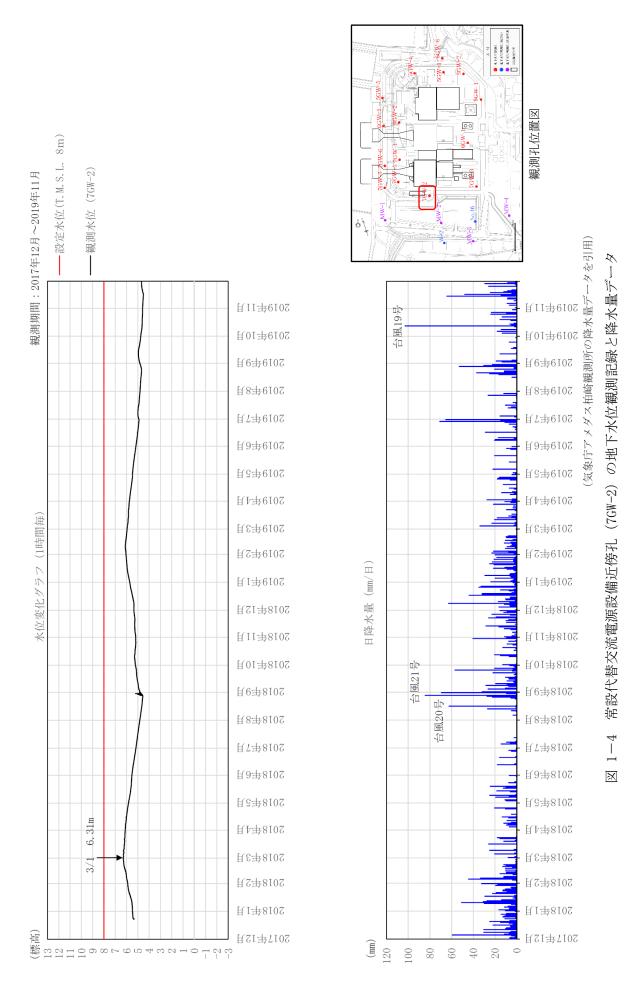
# 1. 地下水位観測データ

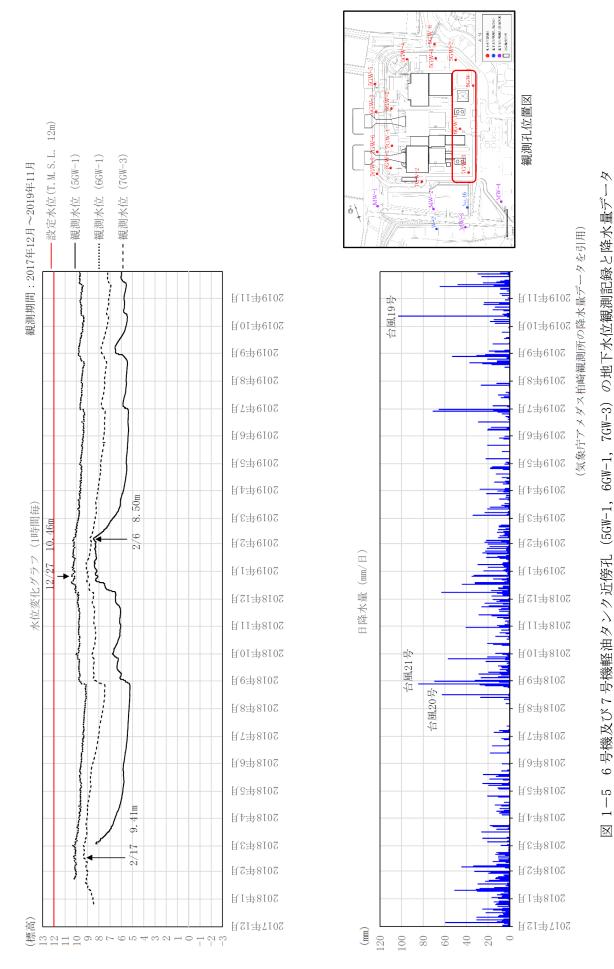

敷地内の観測最高地下水位分布図を図 1-1 に、地下水位観測孔の連続観測データ及び観測孔位置の耐震評価上の設定水位を図 1-2~図 1-9 に示す。なお、参考として建設時の地下水位観測記録を図 1-10 に示す。



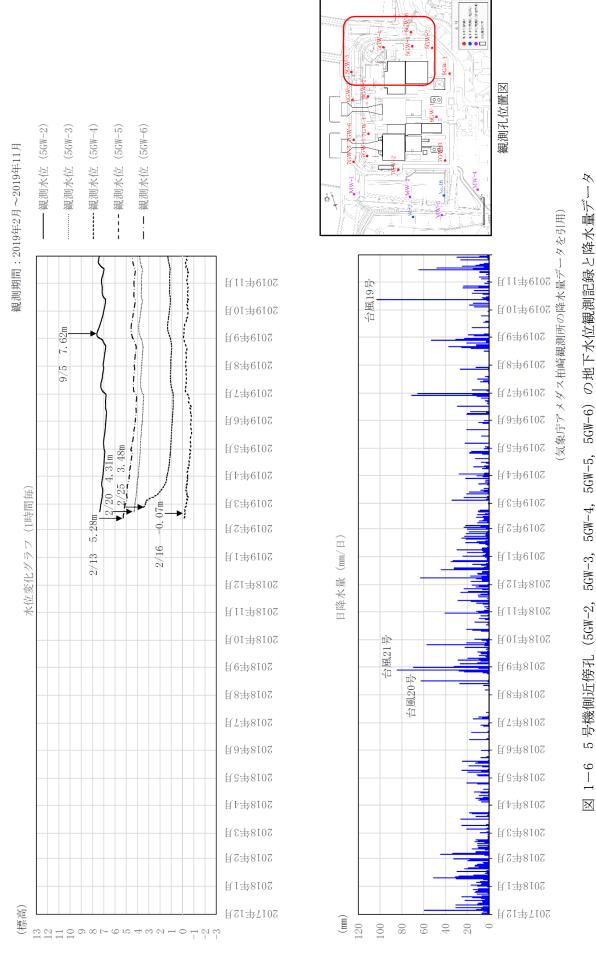

注1: 図中の数値は、各地下水位観測孔の観測最高地下水位の標高(T.M.S.L.)を示す。

注2: 図中の() 内数値は、各地下水位観測孔の敷地内観測孔において通年の観測記録が得られている 2018年の年間平均水位を示す(該当期間の記録がない観測孔は()記載なし)。

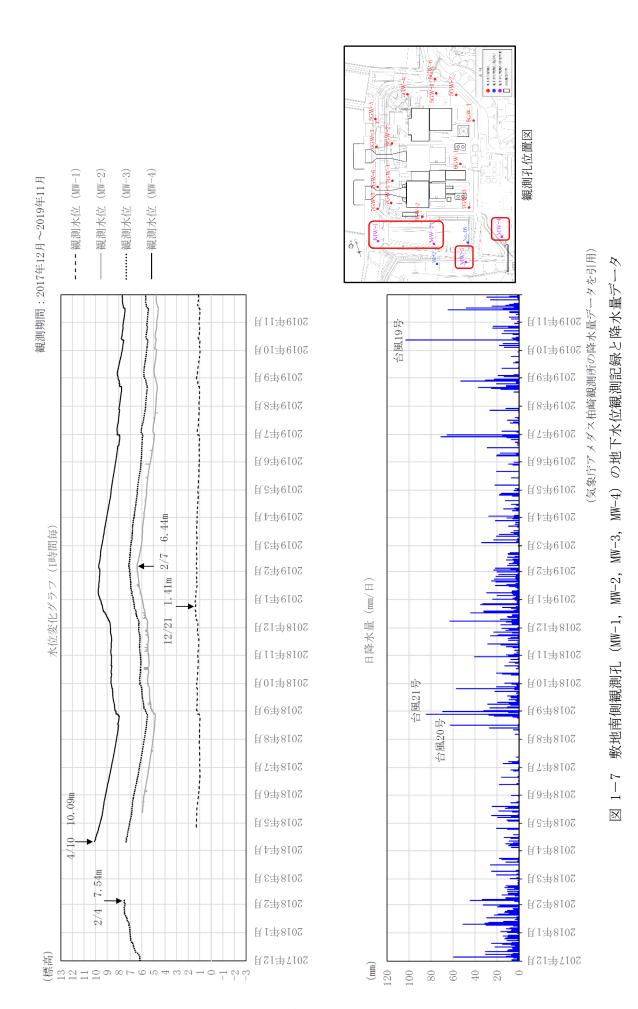

図 1-1 観測最高地下水位分布図




(参考) 1-2




(参考) 1-3






(参考) 1-5



(参考) 1-6



(参考) 1-7

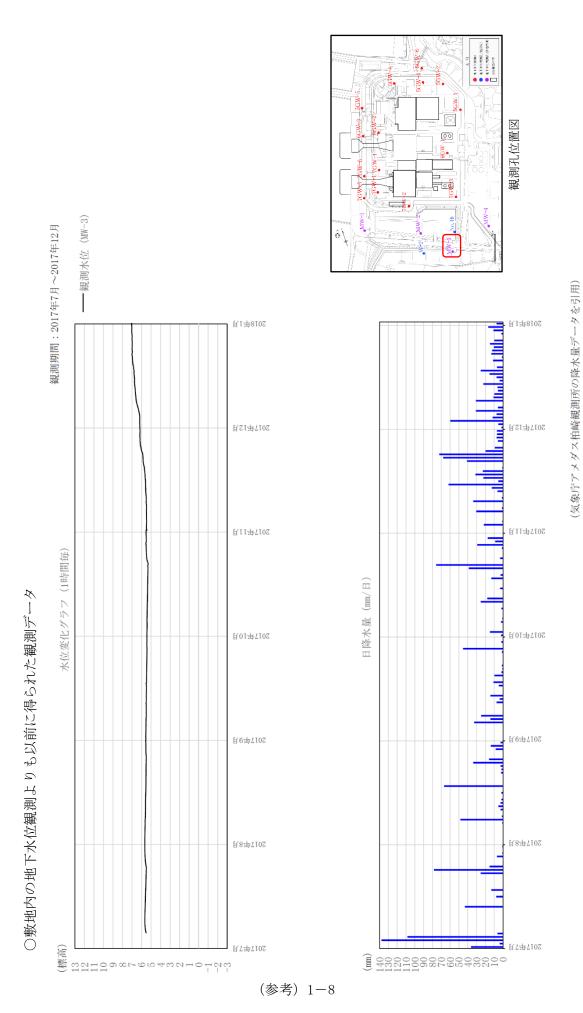
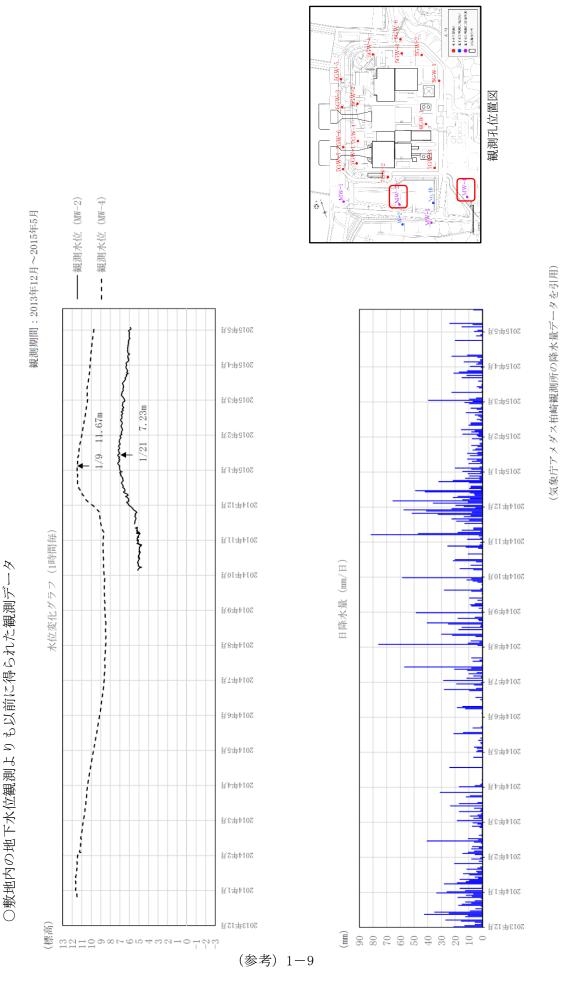
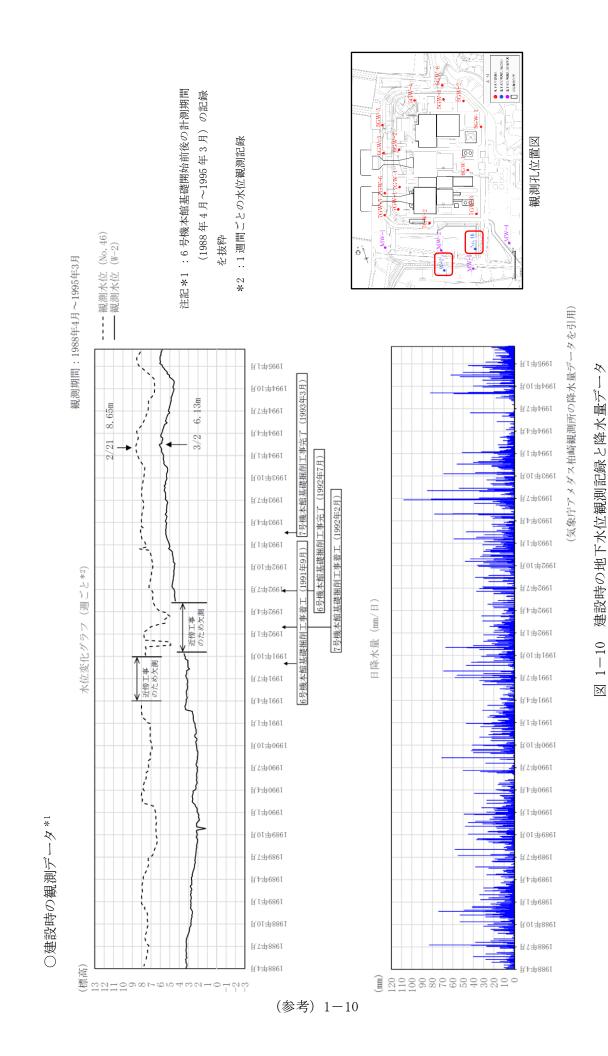
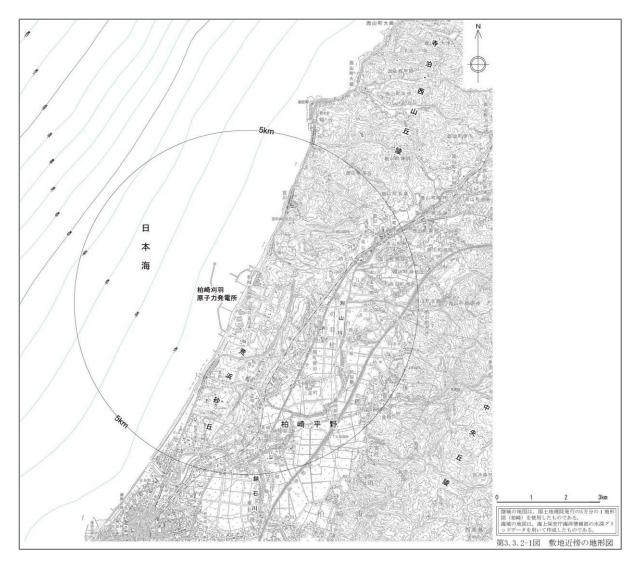



図 1-8 敷地南側観測孔 (MW-3) の地下水位観測記録と降水量データ



図 1-9 敷地南側観測孔 (MW-2, MW-4) の地下水位観測記録と降水量データ



# 2. 敷地周辺の地下水位

# 2.1 敷地周辺の地形と地下水の流れ

設置変更許可申請書に示した柏崎刈羽原子力発電所の敷地近傍の地形図を図 2-1 に示す。 敷地は、日本海と柏崎平野に挟まれた標高 80m~100m の寺泊・西山丘陵南西端部の荒浜砂丘 に位置する。この砂丘は、複雑な小起伏がみられるが、全体としてはなだらかで丸味があり、 海岸にほぼ平行した等高線で示される地形を呈している。NE-SW方向に連なる標高 60m ~90m を示す分水嶺を境として、日本海側は比較的緩やかな斜面を形成しているが、内陸側 は相対的にやや急斜面となっている。



注: 設置変更許可申請書からの引用

図 2-1 柏崎刈羽原子力発電所の敷地近傍の地形図

120

柏崎刈羽原子力発電所の敷地の地形図を図 2-2 に示す。敷地は、標高 70m~90m の東部から西へ傾斜する斜面を呈し、切土、盛土が分布する。同図に示すように、大湊側敷地の標高は、原子炉建屋等の主要施設が T. M. S. L. 12. 0m(12m 盤)、その西側に位置する護岸部が T. M. S. L. 3. 0m(3m 盤)、東側に位置する高台の標高が T. M. S. L. 35. 0m(35m 盤)となっている。また、12m 盤の南側には T. M. S. L. 49. 0m、58. 0m の中央土捨場がある。

次に、柏崎刈羽原子力発電所の大湊側敷地の古安田層上限面コンターを図 2-3 に示す。 古安田層より上位の地層は砂を主体とする地層(埋戻土、新期砂層、沖積層)であることから、古安田層上限面をほぼ不透水層と仮定すると、降水は地面に浸透し、地下水となり、古安田層上限面を境として流下すると考えられる。7号機原子炉建屋の南側に位置する敷地(以下、「敷地南側」という。)では古安田層上限面が深くなっている。

上記より,敷地の地形・地質的特徴から,大湊側敷地の地下水は,全体として敷地東側の 丘陵地から西へ流れているが,主に敷地南側に認められる古安田層上限面の低部から海に流 出しているものと考えられる。



図 2-2 柏崎刈羽原子力発電所の敷地の地形図

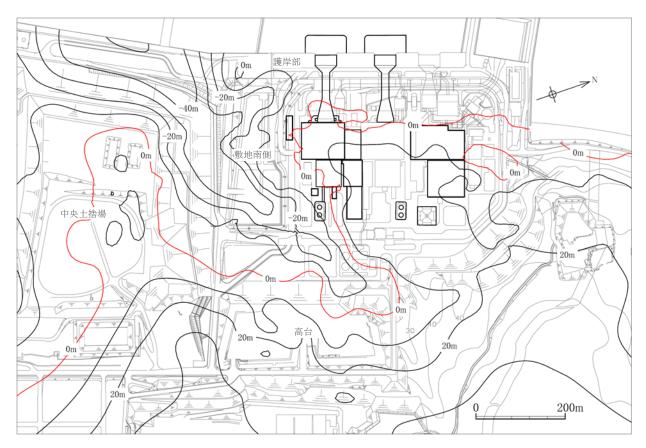
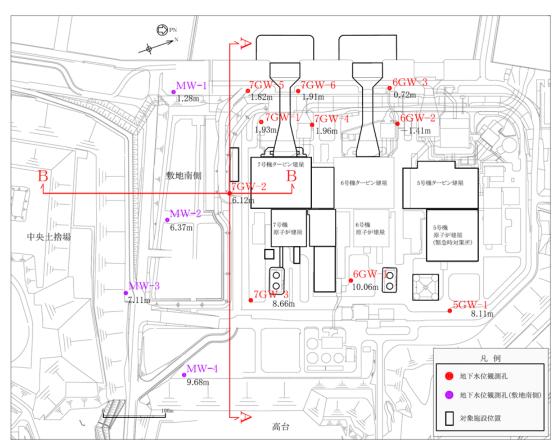
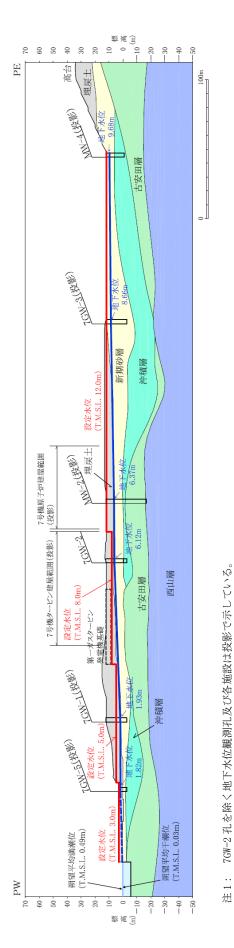


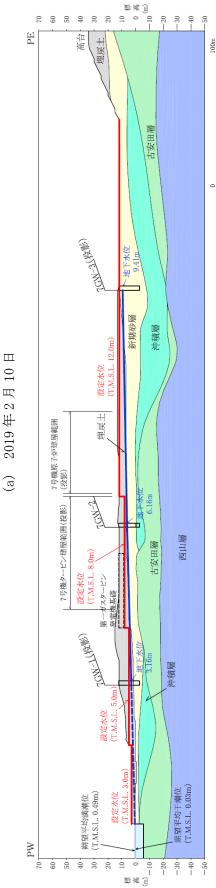

図 2-3 大湊側敷地の古安田層上限面コンター図


## 2.2 敷地の地下水位分布

大湊側敷地において測線上の観測孔(7GW-1, 7GW-2, 7GW-3, 7GW-5, MW-2, MW-4)のデータが揃い,そのうち 7GW-2 孔の観測地下水位が最も高い 2019 年 2 月 10 日の地下水位分布図を図 2-4 に示す。A-A断面(汀線直交断面)及びB-B断面(汀線平行断面)における地下水位を,図 2-5 及び図 2-6 に示す。同図には耐震評価における設定地下水位も併せて示す。なお,同図には測線上の各観測孔(7GW-1, 7GW-2, 7GW-3, 7GW-5)の地下水位が最大となる日時における結果も併せて示す。


A-A断面(汀線直交断面)より,東側(高台)の法尻付近では,平均地下水位は T. M. S. L. 10m 前後であるが, R/B~T/B の位置にかけて T. M. S. L. 6m 前後に低下し,護岸部ではさらに T. M. S. L. 2m 前後に地下水位が低下している。また,図 2-7 に示すとおり,敷地南側に設置した MW-4 孔, MW-3 孔, MW-2 孔に着目すると, MW-4 孔, MW-3 孔, MW-2 孔の順に,内陸部から海にかけて地下水位が低下し、水位も連動していることがわかる。

B-B断面(汀線平行断面)より、中央土捨場の近傍に位置するMW-2 孔に対し、中央土捨場から離れた位置にある7GW-2 孔についても、両孔はほぼ同じ地下水位標高(T.M.S.L.6m前後)を示していることから、中央土捨場側から敷地南側への地下水の流入は少ないものと考えられる。


以上より、大湊側敷地南側の地下水は、内陸部(東側)から海(西側)にかけて緩やかに流下 しているものと考えられる。なお、観測最高地下水位(近傍観測孔)に対する耐震評価における 地下水位の裕度については、後述の表 3-3 に示す。



注: 2019年2月10日に観測記録が得られている観測孔のみ表示 図 2-4 地下水位分布図(2019年2月10日)



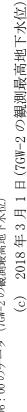
注2:測線上の観測孔 (7GW-1,7GW-2,7GW-3,7GW-5,MW-2,MW-4) のデータが揃い,そのうち7GW-2孔の観測地下水位が最も高い2019年2月10日00:00の記録

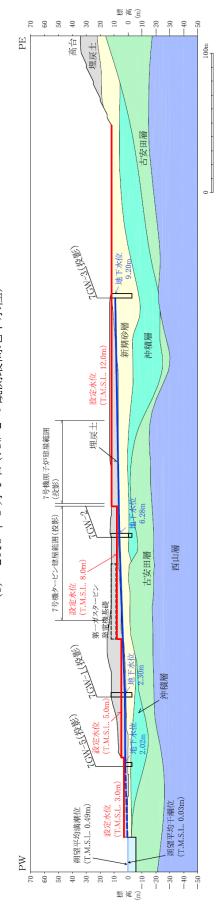


注1: 7GW-2 孔を除く地下水位観測孔及び各施設は投影で示している。


注2: 地下水位は2018年2月17日03:00のデータ (76W-1, 76W-3の観測最高地下水位)

(p)


図 2-5 - A-A断面の地下水位分布(敷地南側 汀線直交断面)(1/2)


2018年2月17日 (7GM-1, 7GM-3の観測最高地下水位)

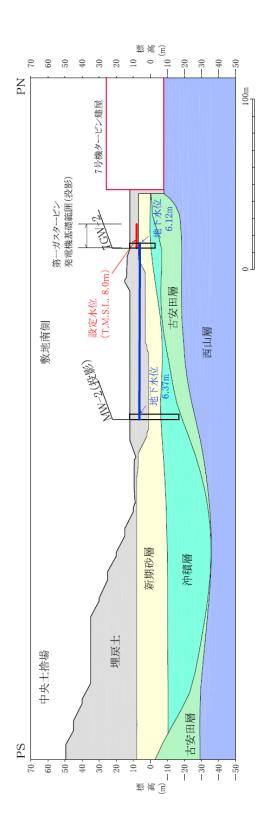
(参考) 1-15



注1: 76W-2 孔を除く地下水位観測孔及び各施設は投影で示している。 注2: 地下水位は 2018 年 3 月 1 日 06:00 のデータ (76W-2 の観測最高地下水位)



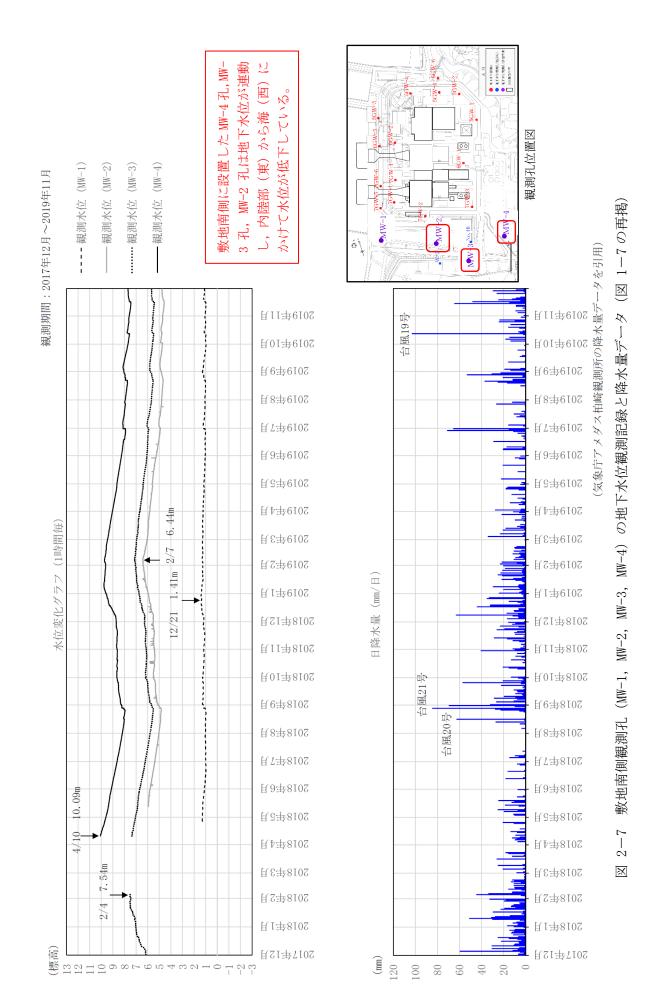



注1: 76W-2 孔を除く地下水位観測孔及び各施設は投影で示している。

注2: 地下水位は2018年3月9日01:00のデータ (70W-5の観測最高地下水位)

図 2-5 A-A断面の地下水位分布(敷地南側 汀線直交断面)(2/2)

2018年3月9日(7GM-5の観測最高地下水位)


(p)



測線上の観測孔 (TGW-2, MW-2) のデータが揃い, そのうち TGW-2 孔の観測地下水位が最も高い 2019 年 2 月 10 日 00:00 の記録 B-B断面の地下水位分布(敷地南側 汀線平行断面) ₹ 2-6

76W-2 孔を除く地下水位観測孔及び各施設は投影で示している。

莊₁: 莊₂:



(参考) 1-18

## 3. 耐震評価における地下水位の設定について

## 3.1 基本方針

耐震評価における地下水位の設定方針の設定フローを図 3-1 に示す。

対象施設が地下水排水設備に囲まれている場合は、地下水排水設備による地下水低下を考慮して耐震評価における地下水位を設定する。

対象施設が地下水排水設備に囲まれていない場合は、地下水位観測記録、地質構造、若しくは潮位に基づき地下水位の検討を行い、現況の地下水位を上昇させる要因の有無、観測記録における地下水位の変動要因(人為的要因・自然要因)を考慮し、耐震評価における地下水位を設定する。

また、耐震評価における地下水位を設定した後に、地下水位を上昇させる事象が発生した場合は、地下水位設定の再検討を行い、必要に応じて影響検討を行う。

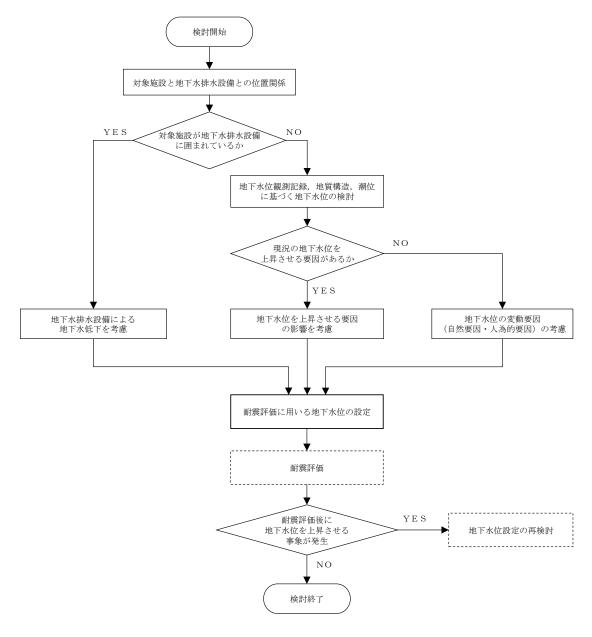



図 3-1 耐震評価における地下水位の設定フロー

## 3.2 地下水排水設備に囲まれた施設の地下水位

## 3.2.1 地下水排水設備の概要

6,7号機の原子炉建屋等の主要建屋及び緊急時対策所を設置する5号機の原子炉建屋 (以下,「緊急時対策所」という。)等の周囲には、地下水位を低下させ、建屋に作用する 揚圧力を低減するための地下水排水設備が設置されている。地下水排水設備の配置概要を 図3-2に示す。

建屋周辺で発生する地下水は、建屋周辺に設置された集水管を通じてサブドレンピットに集水され、基礎スラブ下端より深い位置に設置されたサブドレンポンプ・排水配管により、地下水を地上に揚水して、構内雨水排水経路に排水を行っている。地下水排水設備の設備概要を図 3-3 に示す。

なお,地下水排水設備は,地下水位観測期間(2018年1月~現在)においても常時稼働 している。

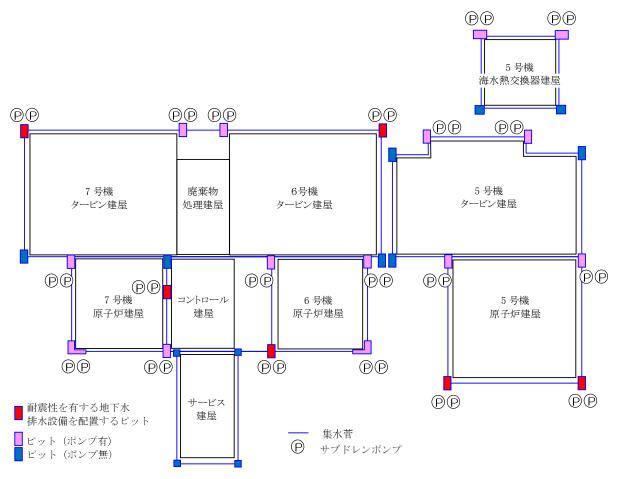



図 3-2 地下水排水設備の平面図

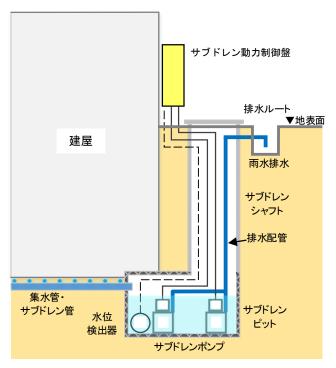



図 3-3 地下水排水設備の設備概要

# 3.2.2 耐震評価に用いる地下水位の設定(地下水排水設備に囲まれた施設)

前述3.1の基本方針に従い,地下水排水設備に囲まれた施設(原子炉建屋,タービン建屋,コントロール建屋,廃棄物処理建屋,緊急時対策所)の耐震評価に用いる地下水位については、地下水排水設備による地下水位の低下を考慮し、地下水排水設備が基礎スラブ下端より深い位置に設置されていることから、保守的に基礎スラブ上端レベルに設定する。

3.3 地下水排水設備の外側に配置した施設の地下水位の設定

前述 3.1 の基本方針に基づき,地下水排水設備の外側に配置した施設については,敷地内の地下水位観測記録に基づき地下水位を検討する。このとき,現況の地下水位を上昇させる要因の有無や地下水位観測記録における変動要因を考慮し,耐震評価における地下水位を設定する。

3.3.1 現況の地下水位を上昇させる要因の有無について

敷地内の地下水位観測記録に基づき地下水位を設定する前提として、現況の地下水位を 上昇させる要因の有無を検討する。

ここで、現況の地下水位を上昇させる要因とは、基礎が岩着している施設及び基盤まで 地盤改良した地盤改良体が挙げられる。これらの構築物は山から海への地下水の流動を妨 げ、構築物の上流側の地下水位を上昇させる可能性がある。

以下では、柏崎刈羽原子力発電所における地下水位を上昇させる要因の有無を抽出し、 これらの要因が敷地内地下水に与える影響を検討する。

(1) 基礎が岩着している施設及び基盤まで地盤改良した地盤改良体の抽出と影響検討 基礎が岩着している施設及び基盤まで地盤改良した地盤改良体の範囲を図 3-4に示す。 図 3-4より、基礎が岩着している施設としては原子炉建屋等が該当し、基盤まで地盤 改良した地盤改良体としては、6、7号機軽油タンク基礎等の地盤改良体が該当する。

同図に示すとおり、原子炉建屋等の施設は広範囲に設置されているため、それよりも上流側の地下水位を上昇させる可能性が考えられるが、原子炉建屋よりも上流側に配置される施設については、耐震評価における地下水位を地表面に設定していることから、地下水位の設定としては妥当である。

一方,基盤まで地盤改良した地盤改良体は原子炉建屋等の主要施設よりも上流側に設置 しているため,敷地内の地下水位を上昇させることはないと判断できる。

これより、柏崎刈羽原子力発電所では、地下水の流動を妨げることにより現況の地下水位を上昇させる要因としては、原子炉建屋等の施設が該当するが、原子炉建屋よりも上流側に配置される施設については、耐震評価における地下水位を地表面に設定していることから、地下水位の設定としては妥当であると判断できる。

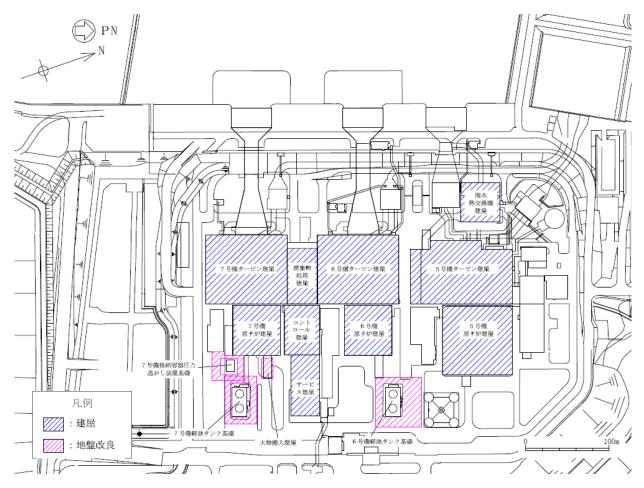



図 3-4 基礎が岩着している施設及び基盤まで地盤改良した地盤改良体の概略範囲

# (2) 防潮堤(自主設備)による敷地内地下水への影響

柏崎刈羽原子力発電所(大湊側)では、図 3-5 に示すように、主要施設を囲うように 津波対策の自主設備として防潮堤(改良盛土)が設置されている。本項では、防潮堤の存 在が敷地内の地下水の流れに影響を与える可能性について検討する。

防潮堤の代表断面を図 3-6 に示す。同図に示すように、防潮堤はセメント改良土で構築されており、地表面から深さ 1.0m までが改良範囲であり、基部の突起を含めてもその深さは 1.90m に留まる。それより下部は、砂が主体の埋戻土が分布していることから、防潮堤(改良盛土)敷地内の地下水の流動に影響を与えないと評価できる。

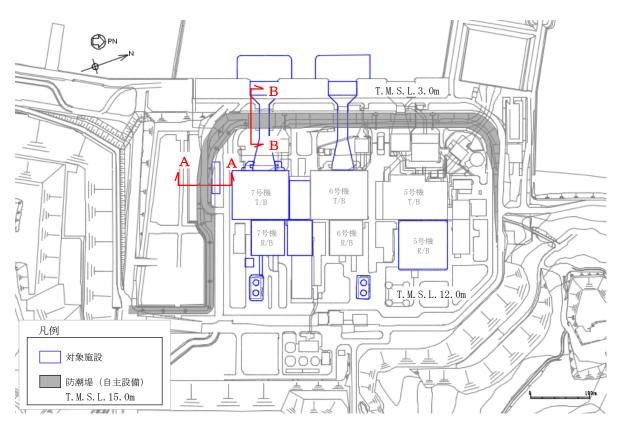
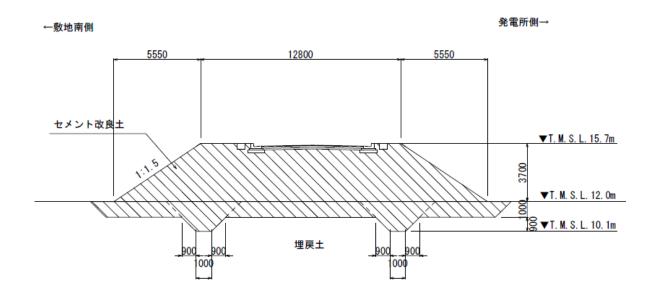




図 3-5 柏崎刈羽原子力発電所 大湊側敷地 防潮堤(自主設備)の範囲



(a) A-A断面

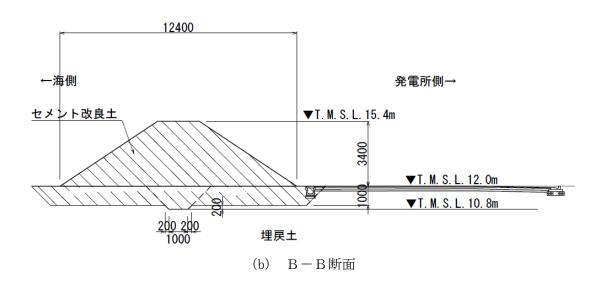



図 3-6 防潮堤(自主設備)の代表断面図

## 3.3.2 耐震評価における地下水位を地表面に設定する施設

地下水排水設備の外側に配置される施設のうち、原子炉建屋よりも山側に配置される施設については、観測された地下水位が地表面標高に近いことから、保守的に地表面標高 (T. M. S. L. 12.0m) に地下水位を設定する。

また,海側の地表面標高 T. M. S. L. 3.0mの敷地については,朔望平均満潮位 0.49m より も高い観測記録が得られていることを踏まえ,保守的に地表面 (T. M. S. L. 3.0m) に地下 水位を設定する。

## 3.3.3 地下水位観測記録における変動要因の考慮

地下水排水設備の外側に配置される施設のうち、第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎(以下,これらを「常設代替交流電源設備」という。),並びに 6,7号機取水路及び補機冷却用海水取水路(以下,これらを「取水路」という。)については、地下水位観測記録に基づき地表面より下に地下水位を設定する。

常設代替交流電源設備については当該施設の上流側に設置した「7GW-2 孔」を指標とし、 取水路については当該施設の近傍に設置された地下水位観測孔の中で最も高い地下水位を 観測した「7GW-1 孔」を指標として、観測最高地下水位を上回る標高に耐震評価における 地下水位を設定する。

ここで,地下水位観測記録に基づいて耐震評価における地下水位を設定する場合,観測記録の変動要因(人為的要因・自然要因)を考慮し,適切に設定する必要がある。

以下では、地下水位観測記録に対する変動要因(人為的要因・自然要因)の影響を踏まえ、常設代替交流電源設備及び取水路の耐震評価における地下水位の妥当性を確認する。

# (1) 人為的要因(地下水排水設備の影響)の考慮

# a. 観測記録に基づく地下水排水設備の影響評価

地下水位観測孔の近傍に地下水排水設備が設置されている場合,地下水位観測記録に おける地下水排水設備による地下水低下の影響を考慮する必要がある。

このため、地下水排水設備から十分に離れた位置にある別の地下水位観測孔に着目し、 両者の地下水位標高及び地下水位傾向を比較する。

以下では、常設代替交流電源設備の地下水位設定の指標とした「7GW-2 孔」と、取水路の地下水位設定の指標とした「7GW-1 孔」の 2 孔に関し、地下水位観測記録における地下水排水設備の影響を分析する。

(a) 常設代替交流電源設備 (7GW-2 孔) に関する地下水排水設備の影響分析 常設代替交流電源設備の地下水位は、施設近傍に設置した 7GW-2 孔の観測最高地下 水位 T. M. S. L. 6. 31m に基づき、保守的に T. M. S. L. 8. 0m としている。

地下水排水設備と地下水位観測孔(7GW-2 孔, MW-2 孔)の位置関係を図 3-7 に示す。同図より、7GW-2 孔の近傍には、地下水排水設備から十分に離れた位置に MW-2 孔が存在する。MW-2 孔と 7GW-2 孔は敷地南側に設置されており、前述 2.1 のとおり、敷地南側の地下水は東側から西側に流下していると想定されることから、両孔の地下水位観測記録を比較し、地下水排水設備の影響を分析する。

7GW-2 孔と MW-2 孔の地下水位経時変化を図 3-8 に示す。これより、両孔の地下水位標高及び地下水位傾向はほぼ重なっていることから、7GW-2 孔には地下水排水設備の影響はないと考えられる。

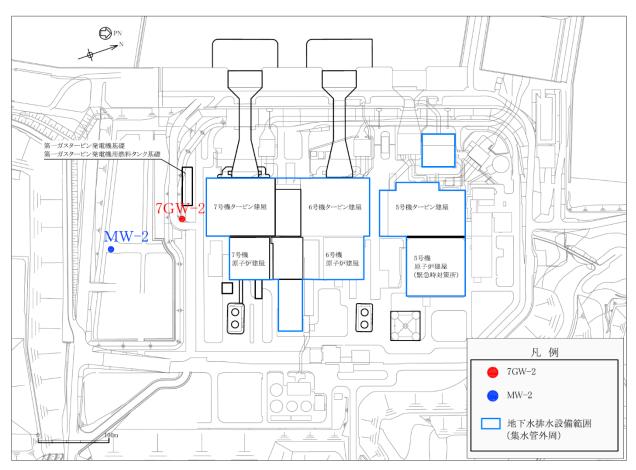
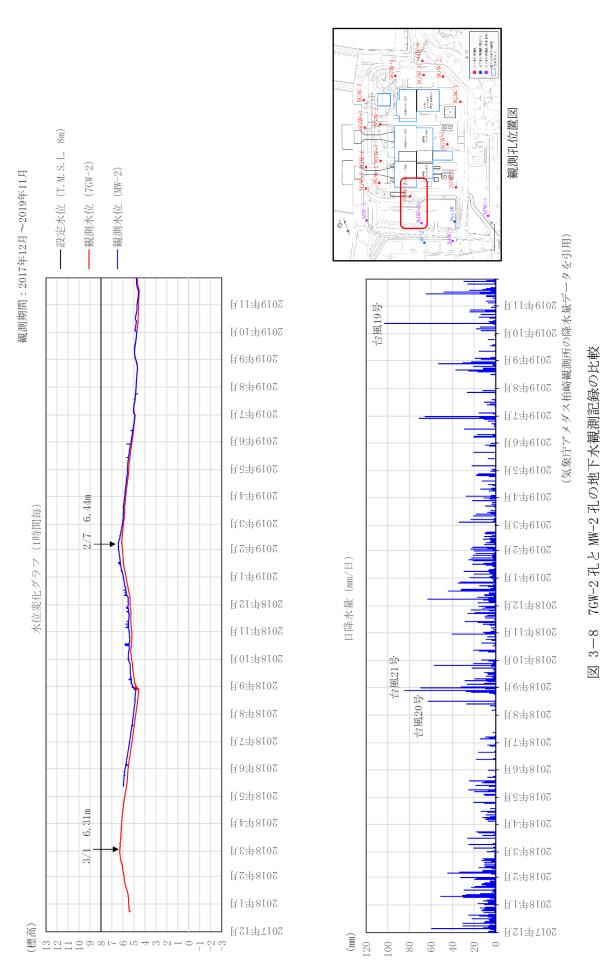




図 3-7 地下水排水設備と地下水位観測孔 (7GW-2 孔, MW-2 孔) の位置関係



(参考) 1-28

#### 取水路(7GW-1 孔)に関する地下水排水設備の影響分析 (b)

取水路の地下水位は, 近傍の 7GW-1 孔の観測最高水位 T. M. S. L. 3. 16m に基づき, 保 守的に T.M.S.L. 5.0m としている。

地下水排水設備と地下水位観測孔 (7GW-1 孔, 7GW-5 孔) の位置関係を図 3-9 に 示す。なお、7GW-1 孔及び 7GW-5 孔は海に近い位置にあることから、潮位*も併せて 示す。7GW-1 孔の近傍には、地下水排水設備から十分に離れた位置に 7GW-5 孔が存在 する。7GW-5 孔は 7GW-1 孔よりも下流側に位置していることから,両孔の地下水位観 測記録を比較し、地下水排水設備の影響を分析する。

7GW-1 孔と 7GW-5 孔の地下水位経時変化を図 3-10 に示す。両孔の地下水位標高 及び地下水位傾向はほぼ重なっているが、7GW-1 孔の地下水位標高が 7GW-5 孔よりも 低くなる時期も認められる。両孔の水位差が生じた時期(2018年4月~7月)は,近 傍で地盤改良工事が実施されており、この時の工事揚水が影響した可能性があるも のの, 地下水排水設備による影響も否定できない。潮位の影響に関しては, 潮位と地 下水位との間に相関性は認められないことから、潮位変動が地下水位に与える影響 は限定的であると考えられる。

一方, 耐震評価に用いる地下水位 (T.M.S.L.5.0m) に対しては, 7GW-1 孔の最高観 測水位 (T.M.S.L.3.16m) に, 7GW-1 孔と 7GW-5 孔との最大水位差 1.02m を加算した 場合でも設定水位以下 (T.M.S.L.4.18m) であることから, 耐震評価に用いる地下水 位は妥当であると考えられる。

PN

注記*:潮位は、柏崎市の天文潮位を示す。(気象庁 潮位表 柏崎(KASHIWAZAKI) より引用)

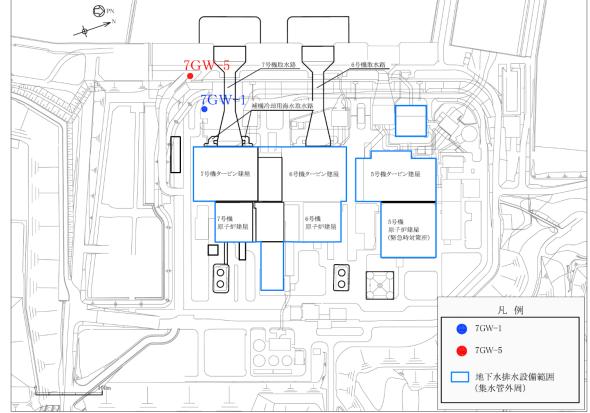



図 3-9 地下水排水設備と地下水位観測孔(7GW-1 孔, 7GW-5 孔)の位置関係

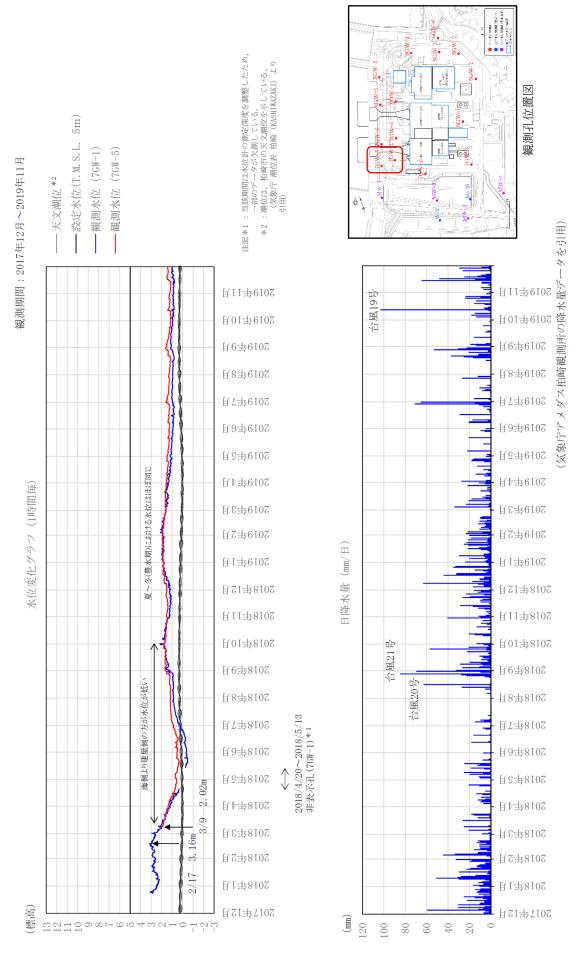



図 3-10 7GW-1 孔と 7GW-5 孔の地下水位観測記録の比較

b. 地下水排水設備の揚水実績に基づく地下水位低下量の評価

地下水排水設備の揚水実績に基づき、近傍の地下水位観測孔における地下水位の低下量を簡易な算定方法により求め、地下水排水設備の影響を定量的に評価する。地下水排水設備の揚水範囲の概念図を図 3-11 に示す。

地下水排水設備の揚水実績に基づく地下水位低下量ΔHの算定方法を下記に示す。

① 地下水位観測孔の近傍に位置する地下水排水設備のサブドレンピット (7T-6) に着目する。地下水は集水管を通してサブドレンピットに流入した後、揚水されることから、揚水範囲はサブドレンピットを中心とする同心円状の範囲と仮定する。ただし、地下水排水設備による揚水範囲は、建屋とラップする範囲を除く範囲とする。よって、揚水面積 A (m²) は、(式 1) により求められる。

$$A = R^2 \times \pi - A_T \tag{\sharp 1}$$

ここで,

R:サブドレンポンプ (7T-6) と地下水位観測孔 (7GW-1, 7GW-2) までの距離 (m)  $A_T$ : 建屋とラップする面積 (円の4分の1とする)

② 揚水面積 A (m²) とサブドレンピット (7T-6) の揚水実績 Q (m³/日) より,単位面積あたりの揚水量 Q_e (m/日) を(式 2) により算定する。なお,揚水実績 Q (m³/日) は平成 20 年度から平成 31 年度までのサブドレンピット (7T-6) における揚水実績値の最大値とする。

$$Q_e = Q \div A \tag{\vec{\pm} 2}$$

③ 飽和状態の土中の間隙から流出した地下水の体積量に応じて地盤の地下水位が低下するとした場合、単位面積あたりの揚水量 $Q_e(m/H)$ を土中に占める間隙水の割合を示す間隙率n*で除すことにより、地下水位観測孔における日あたりの地下水位低下量 $\Delta H(m/H)$ を(式 3)により算定する。

$$\Delta H = Q_e \div n \tag{\vec{\pm} 3}$$

地下水排水設備の揚水実績に基づく地下水位観測孔(7GW-1,7GW-2)における地下水位低下量 $\Delta$ Hの算定結果を表 3-1に示す。これより、地下水排水設備の揚水実績から算定した日あたりの地下水位低下量 $\Delta$ Hは 0.01(m/H)と評価されることから、地下水排水設備の揚水が地下水位観測孔に与える影響はないと評価できる。

注記* : 土は、空気、水、土粒子の三相で構成されている。空気と水が占める部分は「間隙」と呼ばれる。間隙率 n は全体の体積 V に対する間隙の体積( $V_v = V_a + V_w$ )の比率を表し、 $n = V_v/V$ で定義される。本検討では、地下水位以深の地盤の状態は飽和状態であることから、空気の体積  $V_a$  は 0 とし、 $n = V_w/V$  とする。

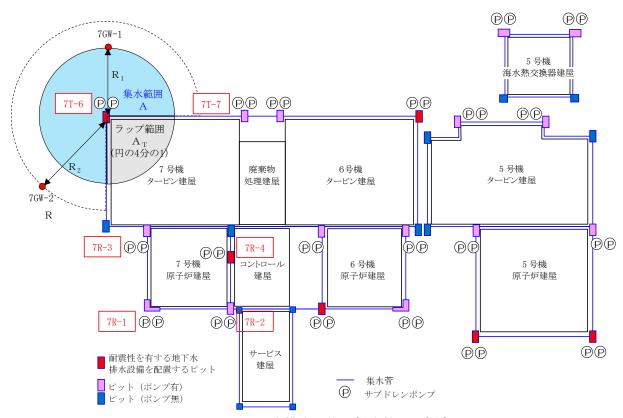
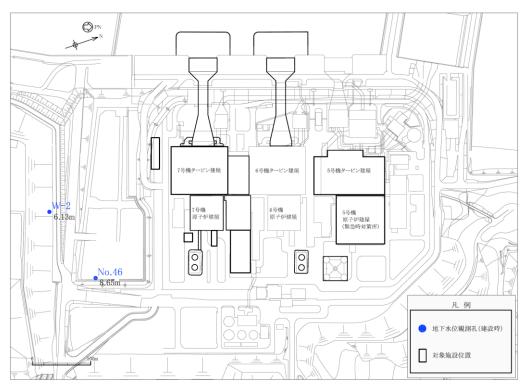



図 3-11 地下水排水設備の揚水範囲の概念図

表 3-1 地下水排水設備の揚水実績に基づく地下水位低下量ΔΗの算定結果

	項目	取水路		常設代替交流電源設備		原設備	備考	
対象	地下水位孔	7 G W-1			7 G W-2			
	サブドレンピット	7T-6			7T-6			
条件	地下水排水設備の揚水面積	A	8201	$m^2$	A	10576	$m^2$	$A = R^2 \times \pi - A_T$
	建屋ラップ面積	Ат	2733	$m^2$	Ат	3525	$\mathrm{m}^2$	$A_T = (1/4) \times R^2 \times \pi$
	サブドレンピットと地下水孔までの距離	$R_1$	59	m	$R_2$	67	m	
	日あたりの揚水量	Q	45	$m^2/$ 日	Q	45	$m^2/$ $\exists$	H20~H30年度実績の最大値
	単位面積あたりの揚水量	Qe	0.005	m/日	Qe	0.004	m/日	$Q e = Q \div A$
	土の間隙率	n	0.45		n	0.45		埋戻土
	日あたりの地下水位低下量	ΔΗ	0.01	m/∃	ΔΗ	0.01	m/日	$\Delta H = Qe \div n$


# c. 建設時の地下水位変動とその要因

建設時に設置されていた地下水位観測孔(No. 46 孔及び W-2 孔)の位置図を、図 3-12 に示す。また、建設時の地下水位を図 3-13 に示す。図 3-13 には、地下水位に影響を与える可能性のあるイベント(5 号機~7 号機の本館基礎掘削等)の実施時期も併せて示す。なお、No. 46 孔及び W-2 孔は、現在両孔とも撤去されている。

敷地南側に設置されていた No. 46 孔については, 1988~1994 年度(欠測期間のある 1991 年度を除く)の期間において, 平均地下水位 T. M. S. L. 7. 3m であり, T. M. S. L. 5. 2~8. 7m の幅で水位変動があるが,季節変動以外の長期的な水位変動は認められない。なお, No. 46 孔の設置場所(軽油タンク基礎近傍)では, 工事計画認可申請における耐震評価の地下水位は, 地表面に設定されている。

中央土捨場の斜面に設置されていた W-2 孔については、1988~1990 年度までは、平均地下水位は T. M. S. L. 2.5m であったが、1991 年頃を境として、平均地下水位が 5.2m となり、地下水位の傾向が変化している。この地下水位変化の要因としては、図 3-14 に示すように、敷地南側に砂取り場として掘削していた場所での盛立てが行われていること、また、同時期における中央土捨場の法面整備に伴って W-2 孔の設置標高も変わっており*、このことから、周辺の土地造成に伴って、地下水の流動場が変化した可能性が考えられる。

注記*:中央土捨場の造成に伴い、W-2 観測孔の地表面標高は、(1991 年) T. M. S. L. 17.7m から (1993 年) T. M. S. L. 9.6m に変化



注: 図中の数値は、各地下水位観測孔の観測最高地下水位の標高 (T.M.S.L.) を示す。 図 3-12 建設時の観測孔 (No. 46 孔, W-2 孔) の観測位置図

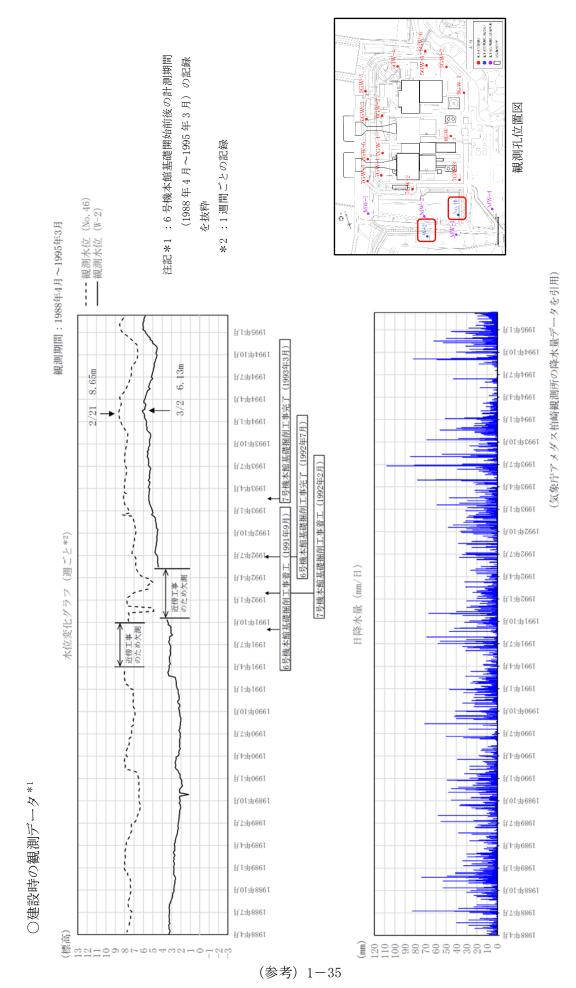
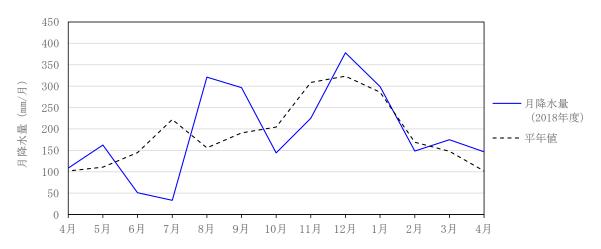



図 3-13 建設時の地下水位観測記録と降水量データ(図 1-10 の再掲)


### (2) 自然要因の考慮

### a. 柏崎地点の観測期間における降雨分析

気象庁アメダスの観測記録に基づき、柏崎地点における平年値(1981年~2010年の30年間の平均値)と敷地内の地下水位の観測期間(2018年度)との降雨量を比較した。柏崎地点における平年値と2018年度の降水量の比較結果を図3-15に示す。

グラフより、敷地内の地下水位観測期間である 2018 年度は平年値と比較して、6~7 月は平年値よりも降水量が少ない時期があるものの、敷地内の地下水位が高くなる 12 月~3 月にかけては平年並みの降雨が降っていることがわかる。

以上より,自然要因として年間の降雨のばらつきを考慮しても,敷地内の地下水位の観測期間 (2018 年度) の降雨量は、概ね平年並みであり、特異性はないと判断できる。



注:気象庁アメダスより柏崎地点における観測記録に基づきグラフ化

図 3-15 柏崎地点における平年値と 2018 年度の降水量の比較結果

#### b. 建設時の観測記録を踏まえた耐震評価における地下水位の妥当性確認

建設前後7年間連続観測しており主要施設よりも上流側(山側)に位置するNo.46孔に着目し、1988~1994年度(欠測期間のある1991年度を除く)における年度別の最高地下水位を整理した。また、工事の影響により地下水位が安定している期間は3か年程度と短いものの、W-2孔についても同様の整理を行った。

観測期間年度別(1988~1994)の最高地下水位を表 3-2 に示す。同表より、No. 46 孔の年度別の最高地下水位の平均は T. M. S. L. 8.27m であり、年によって-0.25~+0.38m の水位変動が認められ、W-2 孔については、年度別の最高地下水位の平均 T. M. S. L. 5.88m であり、年によって-0.43~+0.25m の水位変動が認められる。

上記の建設時の観測記録を踏まえ、地表面より下に地下水位を設定している対象施設について、耐震評価における地下水位設定の妥当性を検討した。検討は、対象施設近傍の 観測地下水位に対し、建設時の年別の最高地下水位に対する水位変動を加算し、耐震評価 上の地下水位と比較することにより、地下水位設定の妥当性を確認する。

#### (a) 常設代替交流電源設備(7GW-2 孔)

前述(1)a. に示したとおり、地表面より下の T. M. S. L. 8. 0m に地下水位を設定している常設代替交流電源設備に着目した場合、近傍の地下水位観測孔 7GW-2 孔の年間最高地下水位は T. M. S. L. 6. 31m である。これに対し、No. 46 孔と W-2 孔の水位変動の最大値 0.38m を考慮したとしても、T. M. S. L. 6.69m であり、現行の地下水位設定である T. M. S. L. 8.0m を下回る。

#### (b) 取水路 (7GW-1 孔)

前述(1)a. に示したとおり、地表面より下の T. M. S. L. 5. 0m に地下水位を設定している取水路に着目した場合、近傍の地下水位観測孔 7GW-1 孔の年間最高地下水位は T. M. S. L. 3. 16m である。これに対し、No. 46 孔と W-2 孔の水位変動の最大値 0.38m、前述(1)a. に示した地下水位低下設備による影響として 7GW-1 孔と 7GW-5 孔との最大水位差 1.02m をそれぞれ考慮したとしても、 T. M. S. L. 4. 56m であり、現行の地下水位設定である T. M. S. L. 5. 0m を下回る。

以上のことから,長期間観測された建設時の観測記録から年単位の地下水位のばらつきを踏まえても,耐震評価の地下水位の設定は妥当であると判断できる。

表 3-2 観測期間年度別 (1988~1994年度) の最高地下水位

		No.	46	W-	-2	
		最高地下水位(m)	観測日時	最高地下水位(m)	観測日時	
1988年	度	8. 05	1989/1/10	土地造成の暑	<b>ど響により</b> ,	
1989年	度	8. 09	1990/3/13		この水位傾向が	
1990年	度	8. 02	1991/3/26	異なるため対象外とした		
1991年	度	欠測	欠測 一		_	
1992年	度	8. 23	1992/12/27	5. 45	1993/3/16	
1993年	度	8. 65	1994/2/21	6. 13	1994/3/2	
1994年	度	8. 55	1995/2/21	6.07 1995/		
	最大	8. 65	1994/2/21	6. 13	1994/3/2	
観測期間	最小	8. 02	1991/3/26	5. 45	1993/3/16	
$1988 \sim 1994$	平均	8. 27	_	5. 88	_	
	変動幅	$-0.25\sim+0$	. 38 (0. 63)	$-0.43\sim+0$	. 25 (0.68)	

注: () 内の数値は建設時の観測期間における最高水位の最大値と最小値の差

#### 3.3.4 耐震評価に用いる地下水位の設定(地下水排水設備の外側に配置する施設)

地下水排水設備の外側に配置する施設のうち、原子炉建屋よりも山側に位置する施設並びに海側の地表面標高 T.M.S.L.3.0mにある施設ついては、観測記録に基づき、保守的に地下水位を地表面に設定する。

地下水排水設備の外側に配置する施設のうち、常設代替交流電源設備及び取水路については、地下水位の変動要因(人為的要因・自然要因)を考慮した上で、観測記録に基づき耐震評価における地下水位を設定する。

以上より、地下水排水設備よりも外側に位置する施設については、耐震評価における地下水位を表 3-3 のとおりに設定する。

表 3-3 耐震設計における各対象施設の地下水位一覧

	対象施設	観測最高水位 (近傍観測孔)	耐震評価における 地下水位	裕度*
建物・	大物搬入建屋 格納容器圧力逃がし装置基礎	T. M. S. L. 9. 41m (7GW-3)	T. M. S. L. 12.0m (地表面)	_
構築物	5 号機 主排気筒	T. M. S. L. 8. 50m (5GW-1)	T. M. S. L. 12.0m (地表面)	_
	6,7号機海水貯留堰(護岸部) 6,7号機スクリーン室	T. M. S. L. 2. 13m (7GW-6)	T. M. S. L. 3. 0m (地表面)	_
	6,7号機取水路 補機冷却用海水取水路	T. M. S. L. 3. 16m (7GW-1)	T. M. S. L. 5. Om	1.84m
土木構造物	第一ガスタービン発電機基礎 第一ガスタービン発電機用燃料 タンク基礎	T. M. S. L. 6. 31m (7GW-2)	T. M. S. L. 8. Om	1.69m
	6,7号機軽油タンク基礎 燃料移送系配管ダクト 非常用ディーゼル発電設備燃料 移送ポンプ防護板	T. M. S. L. 10. 46m (6GW-1)	T. M. S. L. 12.0m (地表面)	_

注記* : 裕度とは、耐震評価における地下水位と観測最高水位との差分を示す。

# (参考資料2)解析用物性値の代用の考え方

# 1. 有効応力解析における解析用物性値の代用の考え方

工事計画認可申請における細分化した地質区分において,「分布範囲が狭い地層」,または「層厚が薄い地層」については,「同時代に堆積し,施設直下及び直近に分布する代表的な地層」により解析用物性値を代用することとする。解析用物性値を代用する地層に対しては,物理特性,速度特性,強度特性,液状化強度特性を比較することにより代用の妥当性を確認する。

本項では,他の地質区分の試験結果で代用する地層について,有効応力解析における解析用物性値の設定における考え方を示す。

表 1-1 及び表 1-2 に設置変更許可書に記載されていない解析用物性値の設定根拠一覧を示す。

	1	地質区分		新其	胡砂層・沖和	責層	古安	田層		
物	性値		埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層
物理	密度	ρ		物理	!試験		物理試験			
特性	間隙率	n		物理	!試験		物理試験			
	動せん断弾性係数	$G_{\text{ma}}$	PS検層に	よるS波速度	度,密度に基	基づき設定	PS検層によるS波速度, 密度に基づき設定			
変形	基準平均有効拘束圧	σ _{ma} ,	慣月	用値	Gmaに対	応する値	Gmaに対応する値			
特性	ポアソン比	ν		用値 倹層)	慣月	月値	慣用値			
	減衰定数の上限値	h max	動	的変形特性	に基づき設	定	動的変形特性に基づき設定			
強度	粘着力	с'		二軸口	縮試験		三軸圧縮試験	A	2s層で代月	Ħ
特 性	内部摩擦角	φ'			. 州日 印代初失					
	変相角	фр								
Safe		S ₁								
液状化		w1			度試験結果		液状化強度試験結果			
特性	液状化パラメータ	p 1	に基	づく要素シ	′ミュレーシ	/ョン	に基づく要素シミュレーション			
		p 2								
		c 1								

表 1-1 解析用物性値の設定根拠(液状化検討対象層)

注: 図中の赤枠は、他の地質区分の試験結果で代用している地層を示す。

表 1-2 解析用物性値の設定根拠(非液状化検討対象層)

	Ш.	也質区分		新期砂層・沖積層			古安	田層		
物	性値		埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物理	密度	ρ	物	理試験		物理	試験			
特性	間隙率	n	物	理試験		物理	試験			
	動せん断弾性係数	:係数 G _{ma} PS検層によるS¾ 密度に基づき			PS検層に	よるS波速度	づき設定			
変形	基準平均有効拘束圧	σ _{ma} ,	G mal Z	対応する値		Gmaに対応する値				で代用
特性	ポアソン比	ν	1	貫用値		慣月	用値		AZC僧	CIVM
	減衰定数の上限値	h max	動的変形特	性に基づき設定	動的変形特性に基づき設定			È		
強度	粘着力	с'	= #	正統計略		二軸口	公定 計 EA			
特性	二、甲上、柏、灰 二、甲上、柏、灰 二、甲上、柏、灰 二、甲上、柏、木 二、甲									

注: 図中の赤枠は、他の地質区分の試験結果で代用している地層を示す。

### 1.1 他の地質区分の解析用物性値で代用する地層の妥当性確認の方針

他の地質区分の解析用物性値で代用する場合は、同年代に堆積した地層の試験結果と比較 し、物理特性、速度特性、強度特性、液状化強度特性を比較することにより、代用の妥当性 を確認する*。

ここで、液状化検討対象層においては、「物理特性」、「速度特性」、「強度特性」及び「液状 化強度特性」を比較する。非液状化検討対象層においては、「物理特性」、「速度特性」、「強度 特性」を比較する。各特性で着目する比較指標とその選定理由を表 1-3 に示す。

特性	比較指標	選定理由
物理特性	粒度分布, 湿潤密度 $\rho$ t, 含水比w, 間隙比e, 塑性指数 $Ip$	地盤材料の基本的な特性値を示すパラメー タであることから選定した。
速度特性	せん断波速度V。	初期せん断弾性係数を規定するパラメータ であることから選定した。
強度特性	粘着力 c ', 内部摩擦角 φ ' or N値	せん断強度を規定するパラメータであることから選定した。力学試験の結果が得られない場合は、強度定数と相関性があるN値を比較する。
液状化強度特性	N値,細粒分含有率 Fc,液 状化強度比 R _L	道路橋示方書における液状化判定に用いられる指標であることから選定した。

表 1-3 解析用物性値の代用における比較指標と選定理由

#### 1.2 他の地質区分の解析用物性値で代用する地層のばらつきについて

地盤剛性のばらつきは、参考資料 4 「2.3 地盤剛性及び液状化強度特性のばらつきを考慮した解析ケース」に示すとおり、PS 検層の結果に基づいて、耐震評価において地盤物性のばらつき ( $\pm 1\sigma$ ) を考慮した解析ケースを実施する。

ここで、他の地質区分の解析用物性値で代用する地層については、「分布範囲が狭い地層」、または「層厚が薄い地層」であることから、同時代に堆積し、施設直下及び直近に分布する代表的な地層の解析用物性値で代用することが妥当であると判断した地質区分については、ばらつきの評価も含めて代用する。

### 2. 代用する地層 (A2s 層) について

古安田層の A2s 層は、大湊側敷地に広く分布する地層である。A2s 層は古安田層(液状化検討対象層)の代表的な地層として、他の古安田層の液状化検討対象層(A3s 層、A2g 層(砂質)、A1g 層)に対して、解析用物性値を代用しており、耐震評価上重要な地層である。

本項では、代用する地層(A2s 層)について、その特徴(分布範囲・外観)、液状化を評価する 観点から配慮した液状化強度試験の供試体選定箇所について示す。

#### 2.1 A2s層の特徴(分布範囲・外観)

古安田層(洪積層)の A2s 層は,原子炉建屋やタービン建屋周辺以外の敷地に広く分布する。図 2-1 に,A2s 層の分布範囲を示す。図 2-2 に,A2s 層のコア写真を示す。A2s 層は砂が主体的であるが,礫やシルトも認められる。

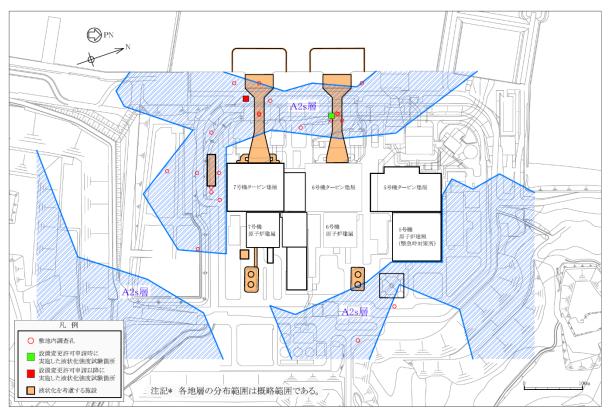



図 2-1 A2s 層の分布範囲(再掲)



図 2-2 古安田層(A2s層)の代表的なコア写真

(参考) 2-4 153

#### 2.2 液状化強度試験に用いる A2s 層の供試体選定箇所

表 2-1 に A2s 層の基礎物理特性を,図 2-3 に液状化強度試験箇所及び敷地内調査孔における A2s 層の粒径加積曲線を示す。敷地内の A2s 層は,礫~シルトまでの広い粒度分布を示しており,細粒分含有率 Fc の平均値は 37.7%となる。

A2s 層の液状化強度試験の供試体は、代表性の観点から、対象施設近傍から採取している。 これに加えて、液状化を評価する観点から、礫~シルトまでの広い粒度分布を示す A2s 層の採 取コアの中でも砂分を多く含む箇所を供試体として選定している。

図 2-5 に、液状化強度試験箇所及び敷地内調査孔における粒度分布の平均値及び平均値±1  $\sigma$  を示す。同図から、液状化強度試験箇所の細粒分含有率 Fc 平均値は 16.0%であり、敷地内調査孔の細粒分含有率 Fc 平均値の 37.7%と比較して細粒分が少ないことがわかる。

A2s 層の液状化強度試験の供試体について、採取深度のN値と細粒分含有率 Fc を用いて、道路橋示方書(V 耐震設計編)・同解説((社) 日本道路協会、H24.3)に基づき液状化強度比  $R_L$  を算出した。その結果を図 2-5 に示す。A2s 層の液状化強度試験の供試体の液状化強度比  $R_L$  の平均値は 3.9 となり、As2 層全体の液状化強度比  $R_L$  の平均値 7.6 に比して小さい。そのため、液状化強度試験の供試体採取箇所は、A2s 層全体に対しても液状化しやすい箇所を選定している。

表 2-1 A2s層の基礎物理特性

地層	湿潤空	E度ρ _t	含水比 w (%)		間隙比 e		細粒分含有率 (%)		塑性指数 I,	
	平均値	標準偏差	平均値 標準偏差 平均値 標準偏差		標準偏差	平均値	標準偏差	平均値	標準偏差	
A2s 層	1.88	0.08	29. 3	6. 3	0.829	0. 116	37. 7	27. 4	31.6	14. 7
AZS /唱	(1.85)	(0.06)	(31. 3)	(5. 3)	(0.899)	(0. 139)	(16. 0)	(8.4)	(NP)	

注:()内の数値は、液状化強度試験供試体の値を示す。

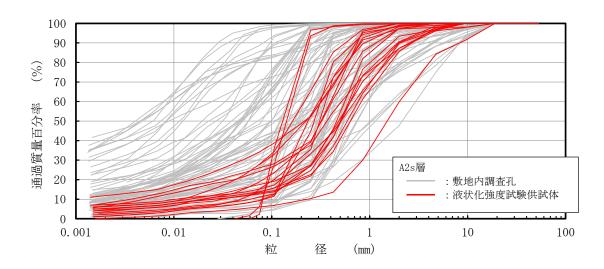



図 2-3 A2s 層の液状化強度試験供試体と敷地内調査孔の粒度試験結果

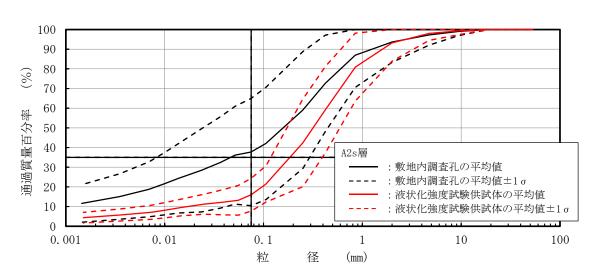



図 2-4 A2s 層の液状化強度試験供試体と敷地内調査孔の粒度分布比較(平均及び平均±1σ)

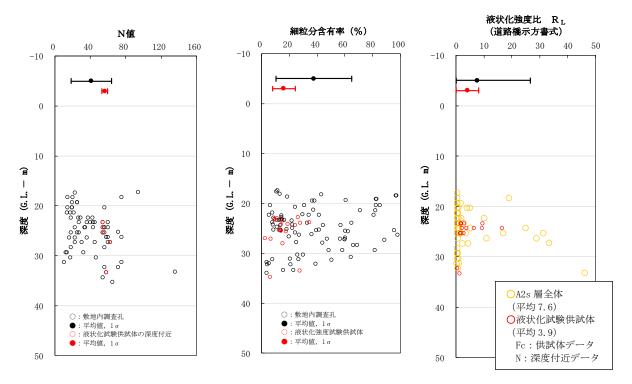



図 2-5 液状化強度試験箇所及び敷地内調査孔のN値,細粒分含有率 Fc,液状化強度比 RLの比較 (古安田層 (A2s 層))

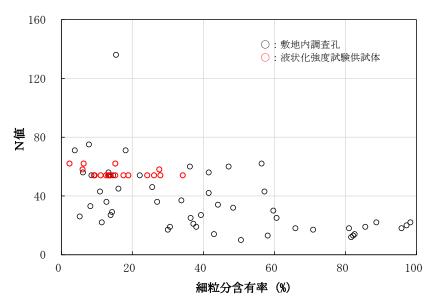



図 2-6 液状化強度試験箇所及び敷地内調査孔の細粒分含有率 Fc と N値の関係 (古安田層 (A2s 層)) (再掲)

# 3. 他の地層区分の試験結果で代用している地層の設定根拠

#### 3.1 液状化検討対象層

### 3.1.1 A3s層の解析用地盤物性値

### (1) 解析用物性値の代用方針

液状化検討対象層の A3s 層は、泥岩礫やシルト層を含む更新世の砂質土層であり、層厚は薄く敷地内にまばらに分布する。A3s 層の分布範囲を図 3-1 に、A3s 層の分布範囲にて作成した地質断面図を図 3-2 示す。

A3s 層の有効応力解析に用いる解析用物性値は、同じ古安田層で敷地に広く、また厚く 分布し、施設直下及び直近に認められる A2s 層にて代用する方針とする。

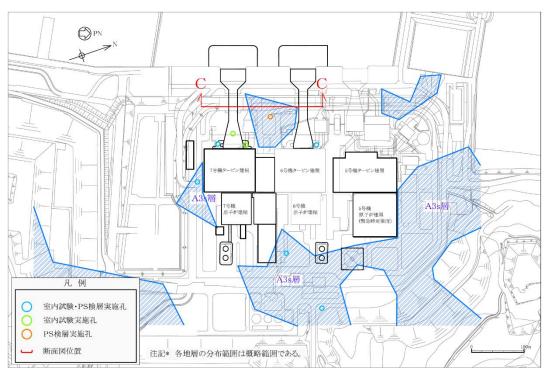



図 3-1 A3s 層の分布範囲 (試料採取位置及び PS 検層位置)

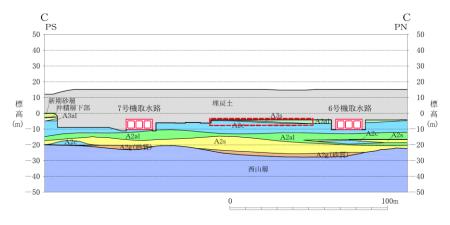



図 3-2 A3s 層の分布範囲にて作成した地質断面図

(参考) 2-8

#### (2) 解析用物性値の代用の妥当性

A3s 層の解析用物性値を A2s 層で代用する妥当性を確認するため, 両層の「物理特性」,「速度特性」,「強度特性」及び「液状化強度特性」について比較する。

「物理特性」については、粒度分布、湿潤密度、含水比、間隙比及び塑性指数について比較した。図 3-3 に両層の粒径加積曲線を、表 3-1 に両層の物理特性を示す。これより、A3s 層は A2s 層と比較して、湿潤密度は A3s 層の方が軽く、含水比及び間隙比は A2s 層より大きい結果となった。これは、A3s 層の細粒分含有率の平均値が 52.2%であるのに対し、A2s 層の細粒分含有率の平均値は 37.7%(液状化試験供試体:16.0%)と、同時代の砂質土層でも A3s 層の方が細粒分を多く含むためだと考えられる。A3s 層の塑性指数は 29.9 であり、A2s 層の 31.6(液状化試験供試体:NP)に対し、ほぼ同等の値である。

「速度特性」について、両層の PS 検層により得られるせん断波速度を比較した。PS 検層の位置図を図 3-1 に示す。両層のせん断波速度の比較結果を図 3-4 に示す。

「強度特性」について、原地盤から採取した試料に対して実施した三軸圧縮試験により 比較を行った。三軸圧縮試験結果の比較結果を図3-5に示す。A3s層とA2s層の強度定数 (c', o')を比較した結果、有意な差が無いことを確認した。

「液状化強度特性」について、両層のN値、細粒分含有率及び道路橋示方書 V(耐震設計編)に基づき算定した液状化強度比  $R_L$ を比較した。これらの比較結果を図 3-6 に示す。 A3s 層の方が代用する A2s 層よりも液状化強度比  $R_L$ が若干大きい結果となった。

これらの結果より、A3s 層は代用する A2s 層と比べて、細粒分含有率が多いものの、速度特性及び強度特性に有意な差が無いことを確認した。また、液状化強度特性については、代用する A2s 層よりも道路橋示方書Vにより算定される液状化強度  $R_L$ が若干高い値を示している。よって、代用する A2s 層は、A3s 層よりも道路橋示方書Vにより算定される液状化強度  $R_L$ を小さく評価している。したがって、A3s 層を A2s 層の解析用物性値で代用することは、地中構造物の耐震評価に影響の大きい液状化強度特性の観点において保守的な評価につながるものと考えられる。

以上より、A3s 層の解析用地盤物性値を A2s 層で代用することは妥当である。

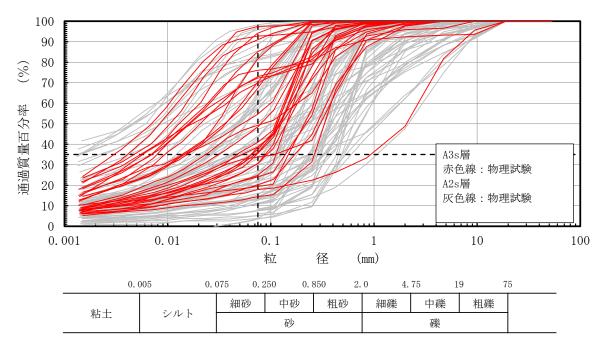



図3-3 A3s 層と A2s 層の粒径加積曲線

表 3-1 A3s 層と A2s 層の基礎物理特性

地層	湿潤密	ß度ρt		含水比 w 間隙比 e		比 e	細粒分	含有率 %)	塑性指数 I,		
	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	
A3s 層	1.77	0.06	35. 2	8. 2	1.049	0. 169	52. 2	26. 2	29. 9	15. 4	
A2s 層	1.88	0.08	29. 3	6.3	0.829	0. 116	37. 7	27. 4	31.6	14. 7	
A45 /盲	(1.85)	(0.06)	(31. 3)	(5.3)	(0.899)	(0. 139)	(16.0)	(8.4)	(NP)	_	

注:()内の数値は、液状化強度試験供試体の値を示す。

(参考) 粒度組成

	礫分	砂分	シルト分	粘土分	細粒分	
地層	(%)	(%)	(%)	(%)	(%)	数量
	平均値	平均値	平均値	平均値	平均値	
A3s 層	2.4	45. 4	32. 3	19. 9	52. 2	30
A2s 層	6. 4	55. 9	22. 7	16. 9	37. 7	87
A25 /B	(6.8)	(77. 2)	(16.0)	(6.3)	(16.0)	(19)

注:()内の数値は、液状化強度試験供試体の値を示す。

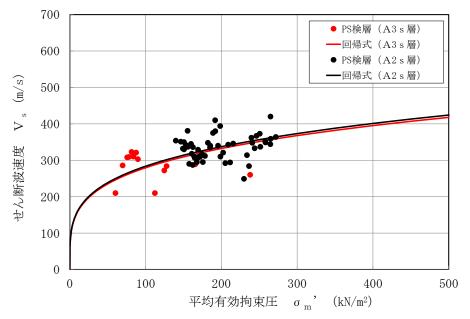



図 3-4 A3s 層と A2s 層の PS 検層結果の比較

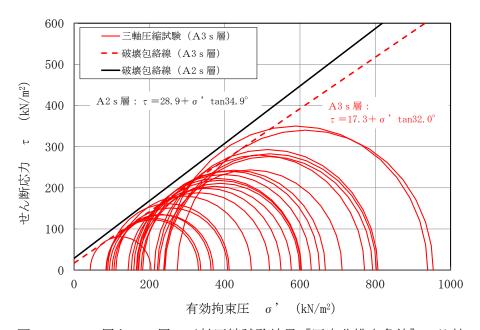



図 3-5 A3s 層と A2s 層の三軸圧縮試験結果 [圧密非排水条件] の比較

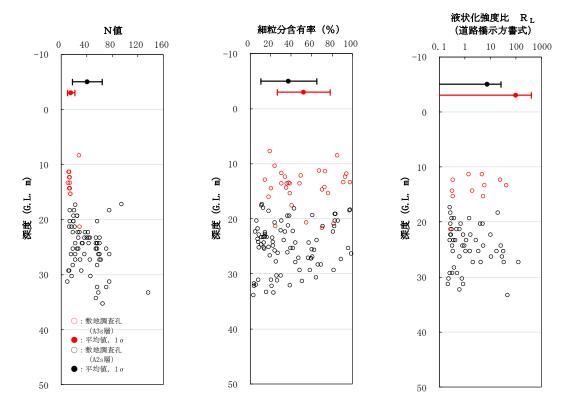



図 3-6 A3s 層と A2s 層の N値, 細粒分含有率 及び道路橋示方書 V に基づく液状化強度比 R_Lの比較

### 3.1.2 A2g層(砂質)の解析用地盤物性値

### (1) 解析用物性値の代用方針

液状化検討対象層の A2g 層(砂質)は、硬質な細礫及び泥岩礫を含む更新世の砂礫層であり、敷地の西側及び南端部に分布する。A2g 層(砂質)の分布範囲を図 3-7 に、A2g 層(砂質)の分布範囲にて作成した地質断面図を図 3-8 に示す。

A2g 層(砂質)の有効応力解析に用いる解析用地盤物性値は、同じ古安田層で敷地に広く、また厚く分布し、施設直下及び直近に認められる A2s 層にて代用する方針とする。

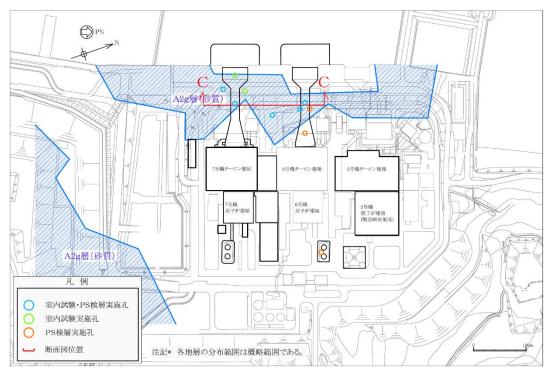



図 3-7 A2g 層(砂質)の分布範囲(試料採取位置及び PS 検層位置)

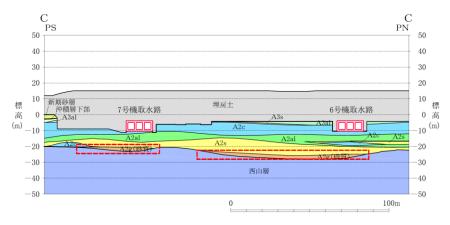



図 3-8 A2g 層(砂質)の分布範囲にて作成した地質断面図

#### (2) 解析用物性値の代用の妥当性の検討

A2g 層(砂質)の解析用物性値を A2s 層で代用する妥当性を確認するため、両層の「物理特性」、「速度特性」、「強度特性」及び「液状化特性」について比較する。

「物理特性」については、粒度分布、湿潤密度、含水比、間隙比及び塑性指数について比較した。両層の粒径加積曲線を図3-9に、物理特性を表3-2に示す。これらより、A2g層(砂質)はA2s層と比較して、湿潤密度はより軽く、含水比はより小さく、間隙比はより大きい結果となっている。これは、A2g層(砂質)がA2s層と比較して泥岩礫を多く含むためだと考えられる。細粒分含有率に着目すると、A2g層(砂質)26.5%で、A2s層の37.7%(液状化強度試験の供試体:16.0%)であり、液状化強度試験に用いたA2s層の方が細粒分含有率は低い。砂分(粒径:0.075~2.0mm)に着目すると、A2g層(砂質)は37.3%であるのに対し、A2s層は55.9%(液状化試験供試体:77.2%)であり、代用するA2s層の方がより液状化しやすい性状の地層であることがわかる。

「速度特性」については、両層の PS 検層により得られるせん断波速度を比較した。PS 検層の位置図を図 3-7 に示す。両層のせん断波速度の比較結果を図 3-10 に示す。

「強度特性」については、礫分が主体的であるため力学試験の実施が困難であることから、内部摩擦角と相関性のあるN値を比較した。両層のN値の比較結果を図3-11に示す。 A2g層(砂質)の方が代用するA2s層よりもN値が大きいことを確認した。

「液状化特性」については、N値、細粒分含有率及び道路橋示方書V(耐震設計編)に基づき算定した液状化強度比  $R_L$ を比較した。これらの比較結果を図 3-11 に示す。A2g 層(砂質)の方が代用する A2s 層よりもN値が大きく、液状化強度比  $R_L$ の平均値は小さいもののばらつきの範囲内であることを確認した。

これらの比較結果より、A2g 層(砂質)は、代用する A2s 層と比べて、泥岩礫を多く含むものの、速度特性はA2s 層と概ね同じであり、N値はA2s 層よりも大きいことを確認した。また、道路橋示方書Vにより算定される液状化強度  $R_L$ の平均値は A2s 層よりも小さく、ばらつきの範囲内であることを確認した。

A2g 層(砂質) は礫分が主体的であるため、力学試験及び液状化強度試験の適用が困難な側面があるが、A2g 層(砂質)の基質は砂分であるため、砂分を主体とする A2s 層を代用することにより、同等の評価が期待できる。また、代用する A2s 層は、A2g 層(砂質)よりも速度特性を小さく評価している。

以上より、A2g層(砂質)の解析用地盤物性値をA2s層で代用することは妥当である。

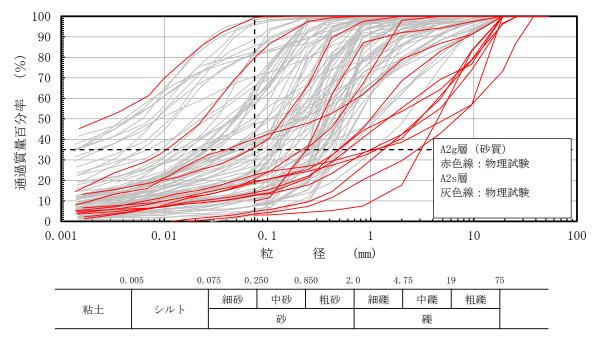



図3-9 A2g層(砂質)とA2s層の粒径加積曲線

表 3-2 A2g 層(砂質) と A2s 層の基礎物理特性

地層	湿潤密度ρt		含水比 w (%)		間隙比 e		細粒分含有率 (%)		塑性指数 I,	
	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差
A2g 層 (砂質)	1.75	0. 13	25. 8	11.8	0. 998	0. 141	26. 5	27.8	結果なし	_
A2s 層	1.88	0.08	29. 3	6.3	0.829	0.116	37. 7	27.4	31.6	14. 7
AAS 眉	(1.85)	(0.06)	(31. 3)	(5.3)	(0.899)	(0.139)	(16. 0)	(8.4)	(NP)	_

注:()内の数値は、液状化強度試験供試体の値を示す。

(参考) 粒度組成

	礫分	砂分	シルト分	粘土分	細粒分	
地層	(%)	(%)	(%)	(%)	(%)	数量
	平均値	平均値	平均値	平均値	平均値	
A2g層(砂質)	36. 1	37. 3	15. 8	14. 7	26. 5	15
A2s 層	6. 4	55. 9	22. 7	16. 9	37. 7	87
AZS 唐	(6.8)	(77. 2)	(16.0)	(6.3)	(16.0)	(19)

注:()内の数値は、液状化強度試験供試体の値を示す。

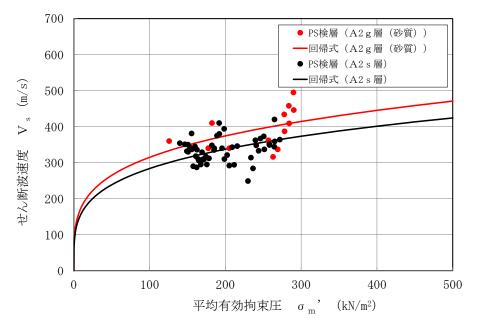



図 3-10 A2g 層(砂質) と A2s 層の PS 検層結果の比較

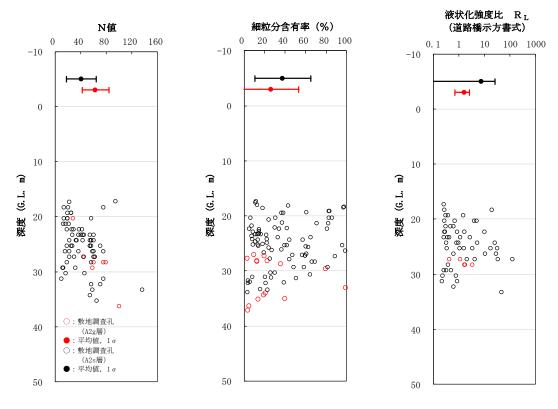



図 3-11 A2g 層(砂質) と A2s 層のN値, 細粒分含有率 及び道路橋示方書 V に基づく液状化強度比 R_Lの比較

#### 3.1.3 Alg層の解析用地盤物性値

### (1) 解析用物性値の代用方針

液状化検討対象層の Alg 層は,泥岩礫を含む砂礫及び泥岩礫を含む砂質シルトを主体とする更新世の堆積物であり,敷地の南部に分布する。また,Alg 層の分布範囲は,耐震評価における対象施設から十分離れている。Alg 層の分布範囲を図 3-12 に,Alg 層の分布範囲にて作成した地質断面図を図 3-13 に示す。

A1g 層の有効応力解析に用いる解析用地盤物性値は、同じ古安田層で敷地に広く、また厚く分布し、施設直下及び直近に認められる A2s 層にて代用する方針とする。

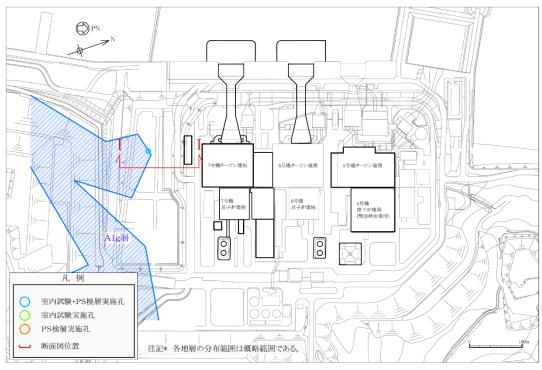



図 3-12 Alg 層の分布範囲 (試料採取位置及び PS 検層位置)

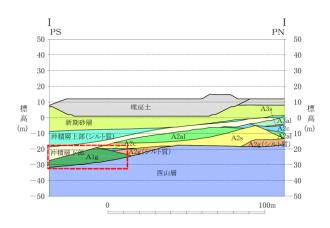



図 3-13 Alg 層の分布範囲にて作成した地質断面図

166

#### (2) 解析用物性値の代用の妥当性

Alg 層の解析用物性値を A2s 層で代用する妥当性を確認するため, 両層の「物理特性」,「速度特性」,「強度特性」及び「液状化特性」について比較する。

「物理特性」については、粒度分布、湿潤密度、含水比、間隙比及び塑性指数について比較した。両層の粒径加積曲線を図 3-14 に、物理特性を表 3-3 に示す。A1g 層は A2s 層と比較して、湿潤密度はより軽く、含水比及び間隙比はより大きい結果となっている。これは、A1g 層の細粒分含有率が 53.6%であるのに対し、A2s 層の細粒分含有率が 37.7% と、同時代に堆積した砂質土層でも A1g 層の方が細粒分を多く含むためだと考えられる。砂分(粒径: $0.075\sim2.0$ mm)に着目すると、A2g 層(砂質)は 37.8%であるのに対し、A2s 層は 55.9%(液状化試験供試体:77.2%)であり、代用する A2s 層の方がより液状化しやすい性状の地層であることがわかる。また、A1g 層の塑性指数は 27.6 を示す。

「速度特性」については、両層の PS 検層により得られるせん断波速度を比較した。両層のせん断波速度の比較結果を図 3-15 に示す。

「強度特性」については、礫分が主体的であるため力学試験の実施が困難であることから、強度定数(c'、 $\phi$ ')と相関性の高いN値による比較を行った。両層のN値の比較結果を図 3-16 に示す。A1g 層の方が代用する A2s 層よりもN値が大きいことを確認した。

「液状化特性」については、N値、細粒分含有率及び道路橋示方書 V に基づき算定した液状化強度比を比較した。これらの比較結果を図 3-16 に示す。A1g 層の方が代用する A2s 層より液状化強度比  $R_L$ が若干大きい結果となった。これは,A1g 層の方が細粒分を多く含むことが要因と考えられる。

これらの比較結果より、A1g 層は、代用する A2s 層と比べて、細粒分含有率が多いものの、速度特性及び強度特性は A2s 層と概ね同じであり、道路橋示方書Vにより算定される液状化強度  $R_L$ は A2s 層よりも若干高い値を示す。したがって、A1g 層を A2s 層の解析用物性値で代用することは、地中構造物の耐震評価に影響の大きい液状化強度特性の観点において保守的な評価につながるものと考えられる。

以上より、Alg層の解析用地盤物性値を A2s層で代用することは妥当である。

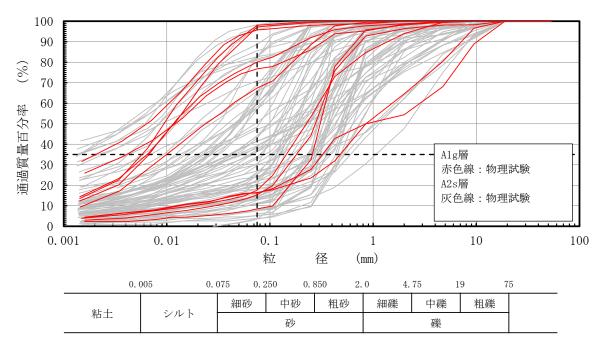



図 3-14 Alg層と A2s層の粒径加積曲線

表 3-3 Alg 層の基礎物理特性

地層		湿潤密度 $ ho$ $_{ m t}$		含水比 w (%)		間隙比 e		含有率 %)	塑性指数 I,	
	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値標準偏差		平均値	標準偏差
A1g 層	1.78	0.05	34. 3	14. 3	1. 141	0. 100	53. 6	38. 3	27. 6	9. 1
A2s 層	1.88	0.08	29.3	6.3	0.829	0.116	37. 7	27. 4	31.6	14. 7
ALS 眉	(1.85)	(0.06)	(31. 3)	(5.3)	(0.899)	(0.139)	(16.0)	(8.4)	(NP)	

注:()内の数値は、液状化強度試験供試体の値を示す。

(参考) 粒度組成

		, -				
	礫分	砂分	シルト分	粘土分	細粒分	
地層	(%)	(%)	(%)	(%)	(%)	数量
	平均値	平均値	平均値	平均値	平均値	
A1g 層	8.6	37. 8	33. 5	20. 1	53. 6	11
A2s 層	6. 4	55. 9	22. 7	16. 9	37. 7	87
AZS /官	(6.8)	(77. 2)	(16. 0)	(6.3)	(16. 0)	(19)

注:()内の数値は、液状化強度試験供試体の値を示す。

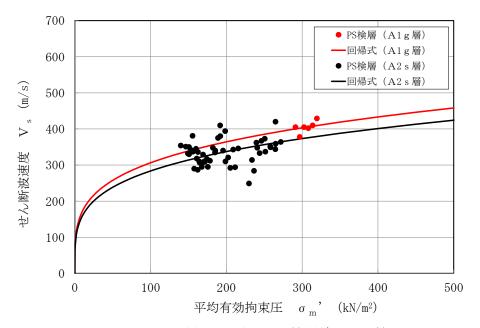



図 3-15 Alg 層と A2s 層の PS 検層結果の比較

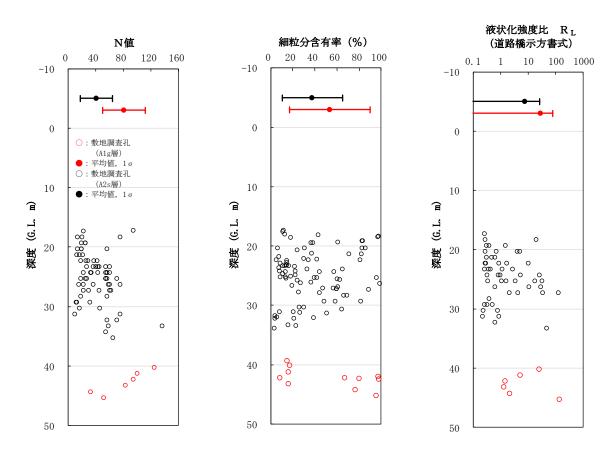



図 3-16 Alg 層と A2s 層のN値, 細粒分含有率 及び道路橋示方書 V に基づく液状化強度比 R_Lの比較

#### 3.2 非液状化検討対象層

### 3.2.1 A2g層(シルト質)の解析用地盤物性値

### (1) 解析用物性値の代用方針

非液状化検討対象層の A2g 層 (シルト質) は、砂礫を含む砂質シルトを主体とする更新世の堆積物であり、敷地の東側に分布する。A2g 層 (シルト質) の分布範囲を図 3-17 に、A2g 層 (シルト質) の分布範囲にて作成した地質断面図を図 3-18 に示す。

A2g 層 (シルト質) の有効応力解析に用いる解析用地盤物性値は、同じ古安田層で敷地に広く,また厚く分布し,施設直下及び直近に認められる A2c 層にて代用する方針とする。

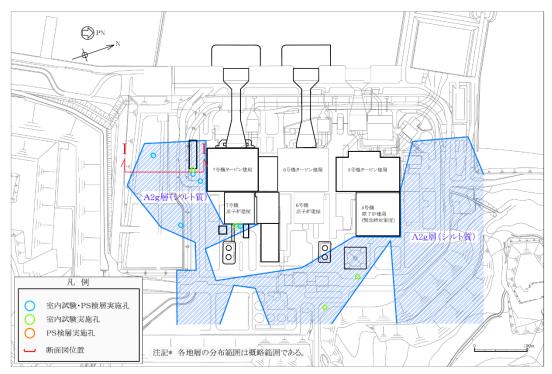



図 3-17 A2g 層 (シルト質) の分布範囲 (試料採取位置及び PS 検層位置)

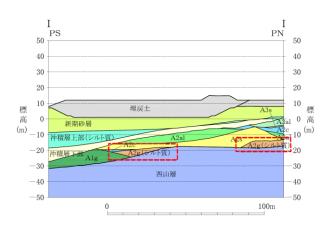



図 3-18 A2g 層 (シルト質) の分布範囲にて作成した地質断面図

(参考) 2-21 170

#### (2) 解析用物性値の代用の妥当性

A2g 層 (シルト質) の解析用物性値を A2c 層で代用する妥当性を確認するため, 両層の「物理特性」,「速度特性」及び「強度特性」について比較する。

「物理特性」については、湿潤密度、含水比、間隙比及び塑性指数について比較した。図 3-19 に両層の粒径加積曲線を、表 3-4 に両層の湿潤密度、含水比及び間隙率を示す。これより、A2g 層(シルト質)は A2c 層と比較して、湿潤密度はより重く、含水比は同等、間隙比はより小さい結果となっている。これは、A2g 層(シルト質)の礫分が 4.3%であるのに対し、A2c 層の礫分は 0.2% と同時代の粘性土層でも A2g 層(シルト質)の方が礫分を多く含むためだと考えられる。A2g 層(シルト質)は西山層の泥岩礫が細粒化したものであるため、一部に礫が現れる場合があるが、細粒分含有率は 77.6% を示しており、シルトを主体とする地層であることから、A2c 層と同等の性状を有する地層であると判断できる。

「速度特性」については、PS 検層により得られるせん断波速度を比較した。PS 検層の位置図を図 3-17 に示す。両層のせん断波速度の比較結果を図 3-20 に示す。

「強度特性」については、シルトを主体とした西山層の泥岩礫を含むため力学試験の実施が困難であることから、強度定数  $(c', \phi')$  と相関性の高いN値による比較を行った。 両層のN値及び細粒分含有率の比較結果を図 3-21 に示す。A2g 層(シルト質)と A2c 層のN値を比較した結果、有意な差が無いことを確認した。

これらの比較結果より、A2g 層(シルト質)は、代用する A2c 層と比べて、礫分が多いものの、速度特性及び強度特性に関しては A2c 層と概ね同じである。A2g 層(シルト質)の基質はシルトであるため、シルト分を主体とする A2c 層で代用することにより、同等の評価が期待できる。

以上より、A2g層(シルト質)の解析用地盤物性値を A2c層で代用することは妥当である。

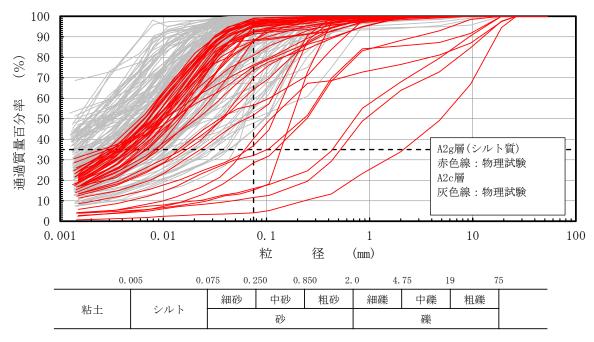



図 3-19 A2g 層 (シルト質) と A2c 層の粒径加積曲線

表 3-4 A2g 層 (シルト質) と A2c 層の基礎物理特性

	地層	湿潤密度ρ _t (g/cm³)		含水比 w		間隙比 e		細粒分含有率 (%)		塑性指数 I _p	
		平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差
	A2g 層 (シルト質)	1. 92	0. 26	40. 9	13. 6	0.849	0. 550	77. 6	28. 0	45. 1	11. 7
	A2c 層	1.80	0.06	41.0	5. 9	1.081	0. 139	90. 6	13. 6	39. 9	14. 7

(参考) 粒度組成

	礫分	砂分	シルト分	粘土分	細粒分	
地層	(%)	(%)	(%)	(%)	(%)	数量
	平均値	平均値	平均値	平均値	平均値	
A2g層(シルト質)	4.3	18. 1	47. 6	30. 0	77. 6	46
A2c 層	0.2	9. 2	47. 5	43. 1	90.6	161

172

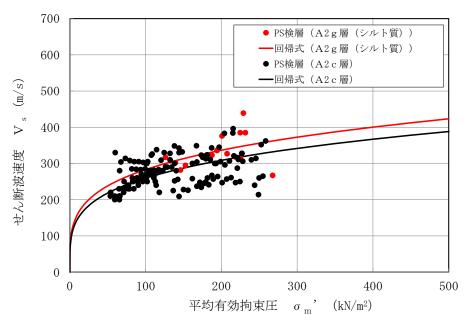



図 3-20 A2g 層 (シルト質) と A2c 層の PS 検層結果の比較

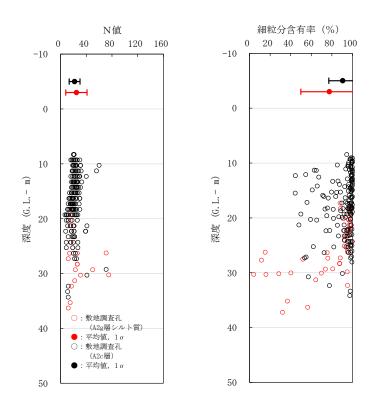



図 3-21 A2g 層 (シルト質) と A2c 層のN値及び細粒分含有率の比較

#### 3.2.2 A1c層の解析用地盤物性値

### (1) 解析用物性値の代用方針

非液状化検討対象層の A1c 層は、シルト及び砂混じりシルトを主体とする更新世の粘性 土層であり、敷地の南部に分布している。また、A1c 層の分布範囲は、耐震評価における 対象施設から十分離れている。A1c 層の分布範囲を図 3-22 に、A1c 層の分布範囲にて作成 した地質断面図を図 3-23 示す。

有効応力解析に用いる A1c 層の解析用地盤物性値は、同じ古安田層で敷地に広く、また厚く分布し、施設直下及び直近に認められる A2c 層にて代用する方針とする。

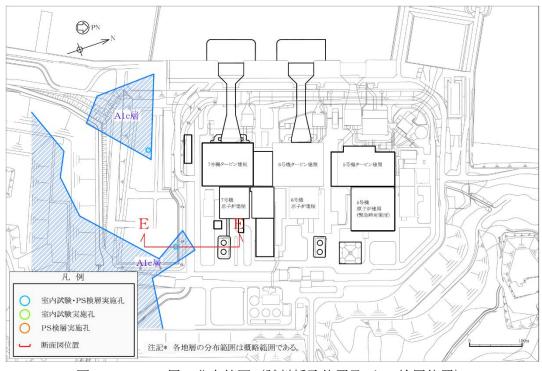



図 3-22 A1c 層の分布範囲 (試料採取位置及び PS 検層位置)

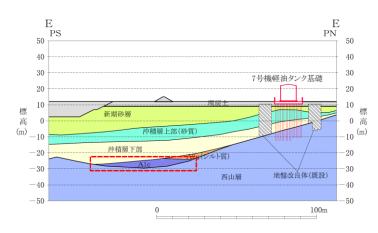



図 3-23 A1c 層の分布範囲にて作成した地質断面図

(参考) 2-25

#### (2) 解析用物性値の代用の妥当性

A1c 層の解析用物性値を A2c 層で代用する妥当性を確認するため, 両層の「物理特性」,「速度特性」及び「強度特性」について比較する。

「物理特性」については、湿潤密度、含水比、間隙比及び塑性指数について比較した。両層の粒径加積曲線を図3-24に、物理特性を表3-5に示す。これらより、A1c層はA2c層と比較して、湿潤密度はより軽く、含水比及び間隙比はより大きい結果となっている。これは、A1c層がシルトを主体とし、A2c層と比較すると淘汰がよく粒度が揃っているためと考えられる。

「速度特性」については、両層の PS 検層により得られるせん断波速度を比較した。両層のせん断波速度の比較結果を図 3-25 に示す。

「強度特性」については、原地盤から採取した試料を用いた三軸圧縮試験に基づき比較した。A1c 層と A2c 層の強度定数(c'、 $\phi$ ')を比較した結果、有意な差が無いことを確認した。

これらの比較結果より、A1c層は、代用するA2c層と比べて、分級された土質であるものの、速度特性及び強度特性に関してはA2c層と概ね同じである。

以上より、A1c層の解析用地盤物性値をA2c層で代用することは妥当である。

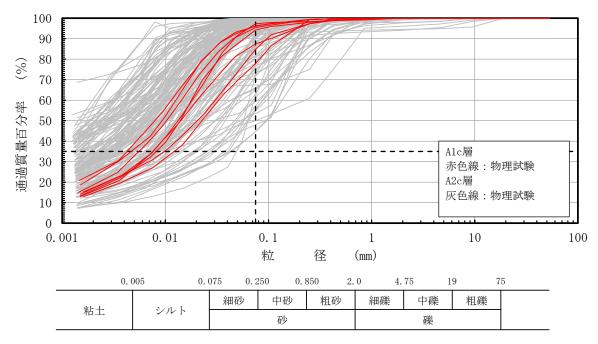



図 3-24 A1c 層と A2c 層の粒径加積曲線

表 3-5 A1c 層の基礎物理特性

地層	湿潤密度ρ _t		含水比 w (%)		間隙比 e		細粒分含有率 (%)		塑性指数 I,	
	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差	平均値	標準偏差
A1c 層	1.73	0.02	46. 6	2. 9	1. 255	0.041	91. 2	7. 0	36. 1	9. 4
A2c 層	1.80	0.06	41. 0	5. 9	1. 081	0. 139	90. 6	13. 6	39. 9	14. 7

(参考) 粒度組成

	礫分	砂分	シルト分	粘土分	細粒分		
地層	(%)	(%)	(%)	(%)	(%)	数量	
	平均値	平均値	平均値	平均値	平均値		
A1c 層	0.0	8.8	61. 9	29. 3	91. 2	8	
A2c 層	0.2	9. 2	47. 5	43. 1	90.6	161	

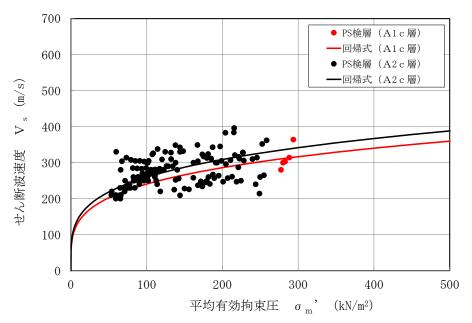



図 3-25 A1c 層と A2c 層の PS 検層結果の比較

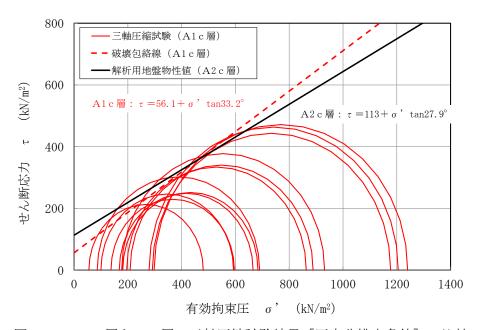



図 3-26 A1c 層と A2c 層の三軸圧縮試験結果 [圧密非排水条件] の比較

177

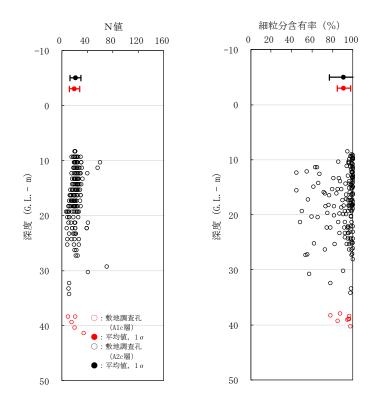
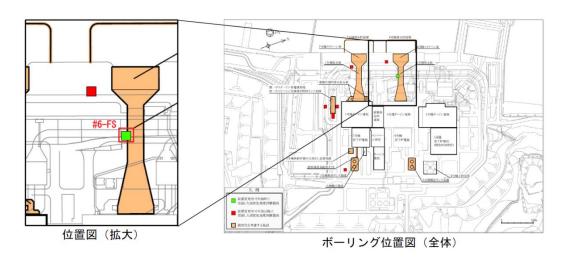




図 3-27 A1c 層と A2c 層のN値及び細粒分含有率の比較

# (参考資料3) 液状化強度試験の詳細について

1. 液状化強度試験箇所のボーリング柱状図・コア写真 液状化強度試験箇所のボーリング柱状図及びコア写真を図 1-1~図 1-8 に示す。



孔名: #6-FS 孔口標高: T. M. S. L. 11. 86m 掘進長: L=44.0m (設置変更許可申請時の液状化強度試験箇所)

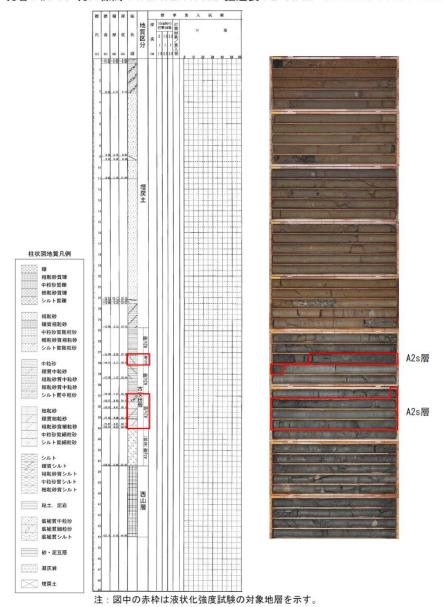
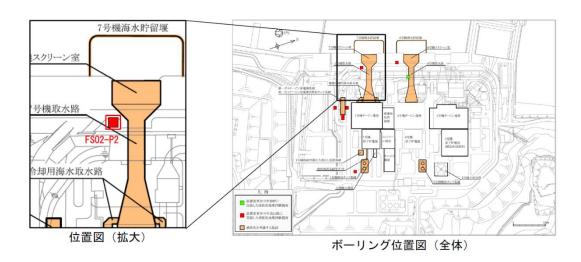
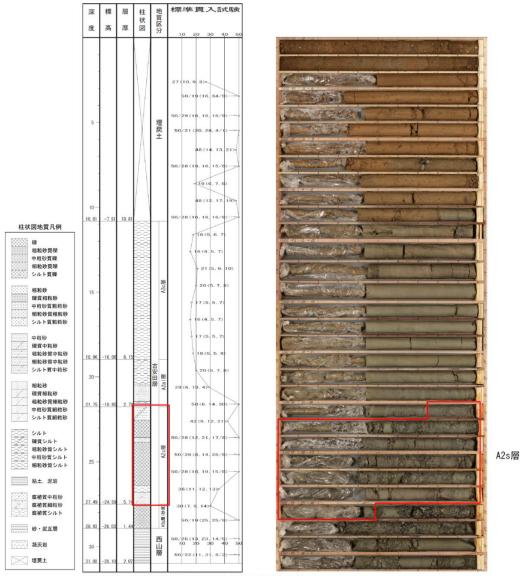
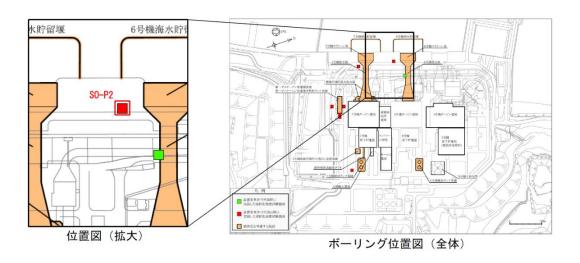





図 1-1 ボーリング柱状図・コア写真(#6-FS)




孔名: FS02-P2 孔口標高: T. M. S. L. 2. 90m 掘進長: L=31. 0m (設置変更許可申請以降の液状化強度試験箇所)



注:図中の赤枠は液状化強度試験の対象地層を示す。

図 1-2 ボーリング柱状図・コア写真 (FS02-P2)



孔名: SO-P2 孔口標高: T. M. S. L. 3. 01m 掘進長: L=10. 0m (設置変更許可申請以降の液状化強度試験箇所)

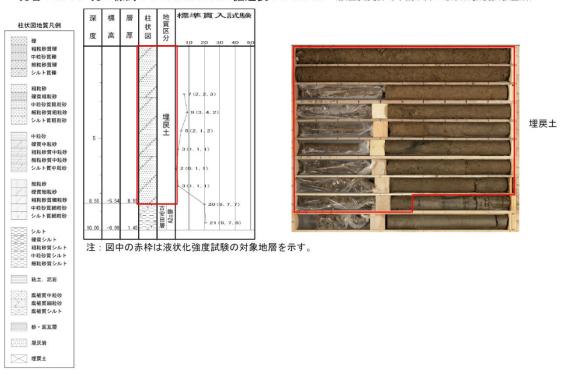
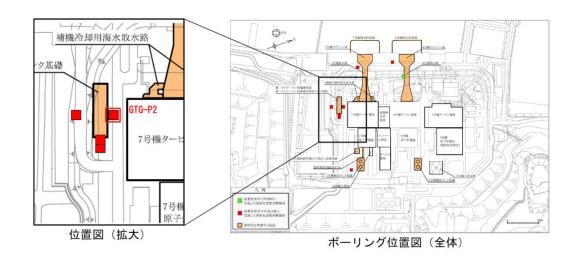




図 1-3 ボーリング柱状図・コア写真 (SO-P2)



孔名:GTG-P2 孔口標高:T. M. S. L. 11. 95m 掘進長:L=31. 0m (設置変更許可申請以降の液状化強度試験箇所)

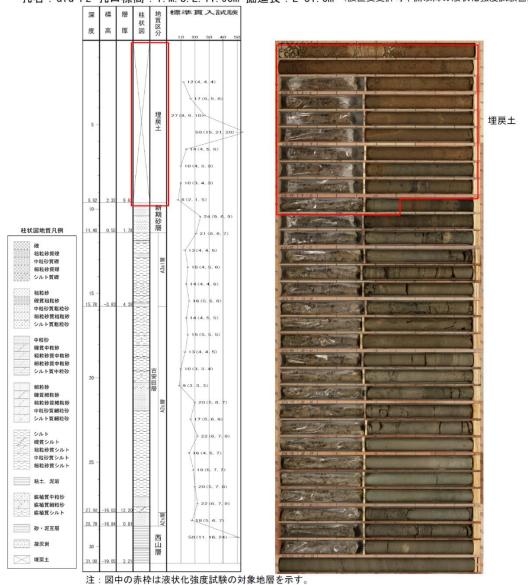
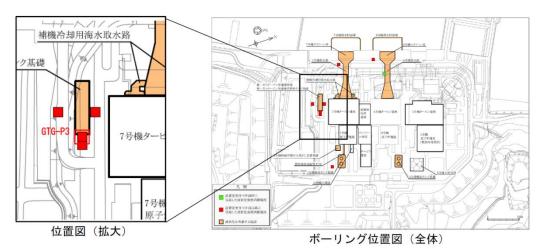
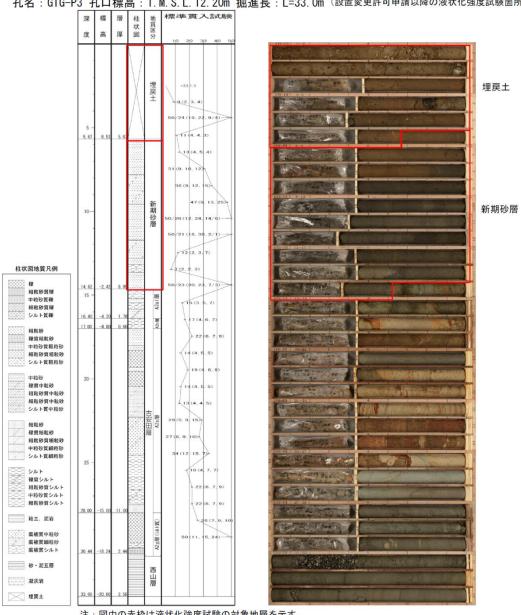
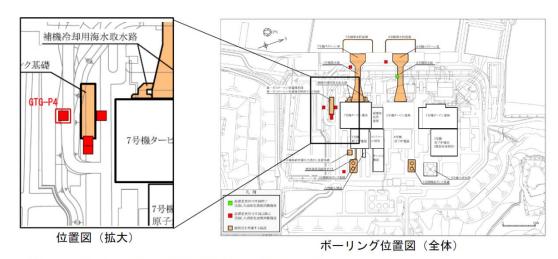
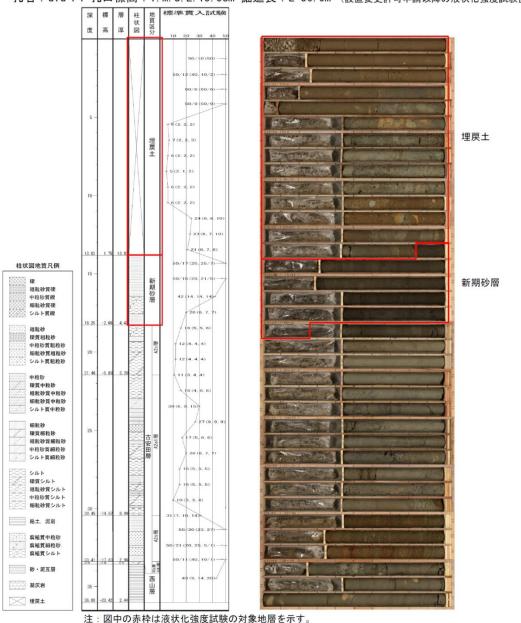





図 1-4 ボーリング柱状図・コア写真 (GTG-P2)

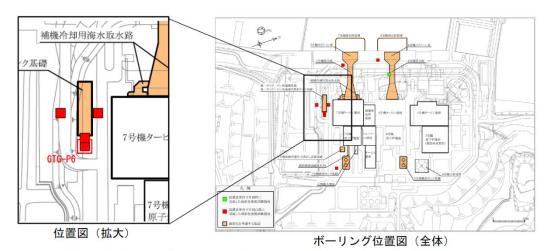



孔名:GTG-P3 孔口標高:T.M.S.L.12.20m 掘進長:L=33.0m (設置変更許可申請以降の液状化強度試験箇所)




注:図中の赤枠は液状化強度試験の対象地層を示す。

図 1-5 ボーリング柱状図・コア写真 (GTG-P3)




孔名:GTG-P4 孔口標高:T. M. S. L. 15. 58m 掘進長:L=36.0m (設置変更許可申請以降の液状化強度試験箇所)



注: 図中の赤枠は液状化強度試験の対象地層を示す。

図 1-6 ボーリング柱状図・コア写真 (GTG-P4)



孔名:GTG-P6 孔口標高:T. M. S. L. 12. 16m 掘進長:L=33. 0m (設置変更許可申請以降の液状化強度試験箇所)

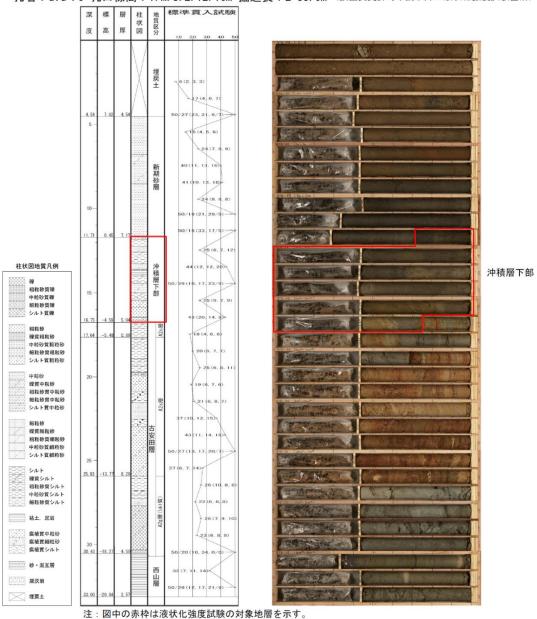
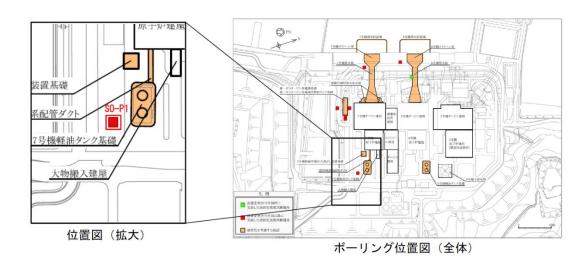




図 1-7 ボーリング柱状図・コア写真 (GTG-P6)



孔名: SO-P1 孔口標高: T. M. S. L. 12. 29m 掘進長: L=30.0m (設置変更許可申請以降の液状化強度試験箇所)

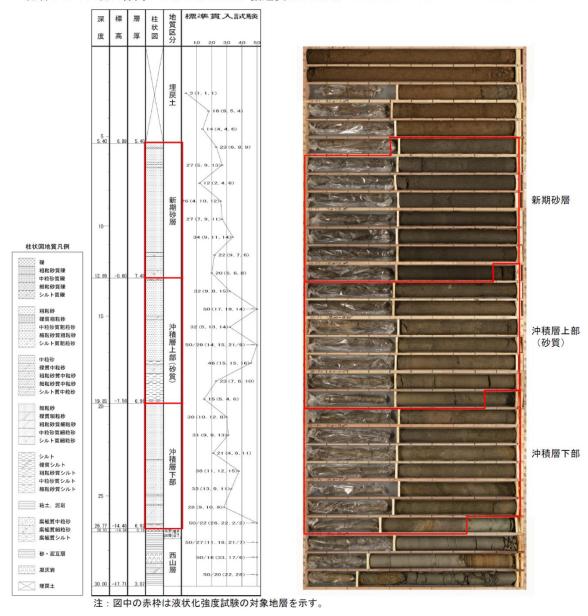
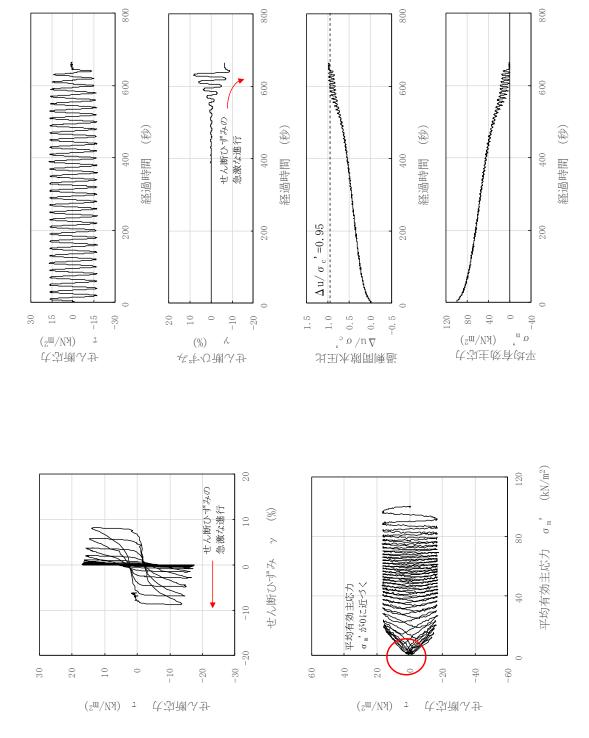
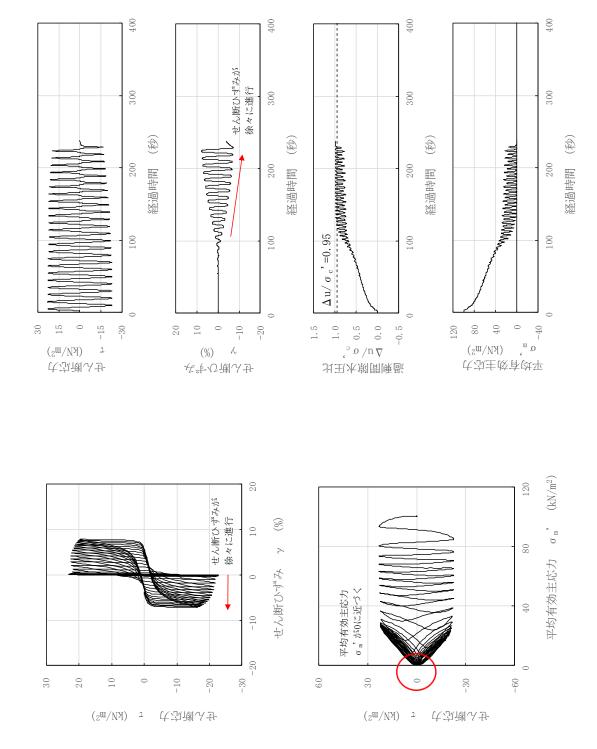
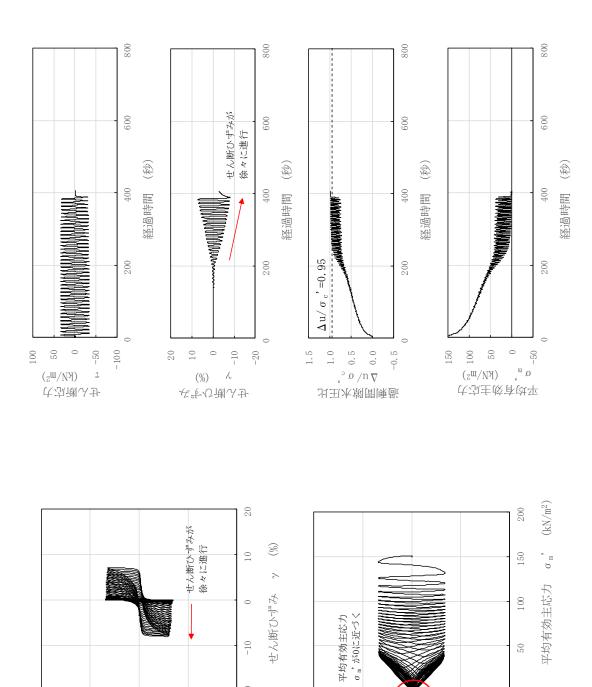




図 1-8 ボーリング柱状図・コア写真 (SO-P1)


# 2. 液状化強度試験結果

液状化強度試験結果の代表例を図 2-1~図 2-5 に示す。


ここで、液状化強度試験結果の代表例は、繰り返し回数 20 回付近で両せん断振幅ひずみ 7.5% に至る試験ケースを目安として、地質区分別に示している。



液状化試験結果(埋戻土, S0-S2'-3-2, GL.-5.13~5.25m, 有効拘束圧 100kN/m², せん断応力比=0.168) 2 - 1×



液状化試驗結果 (新期砂層, SO-S1-2-6, GL.-8.16~8.28m, 有効拘束压 100kN/m², せん断応力比=0.227)  $\times 2-2$ 



液状化試驗結果(沖積層上部(砂質),SO-S1-8-6,GL.-14.66~14.78m,有効拘束圧 150kN/m²,せん断応力比=0.227) 2 - 3X

100

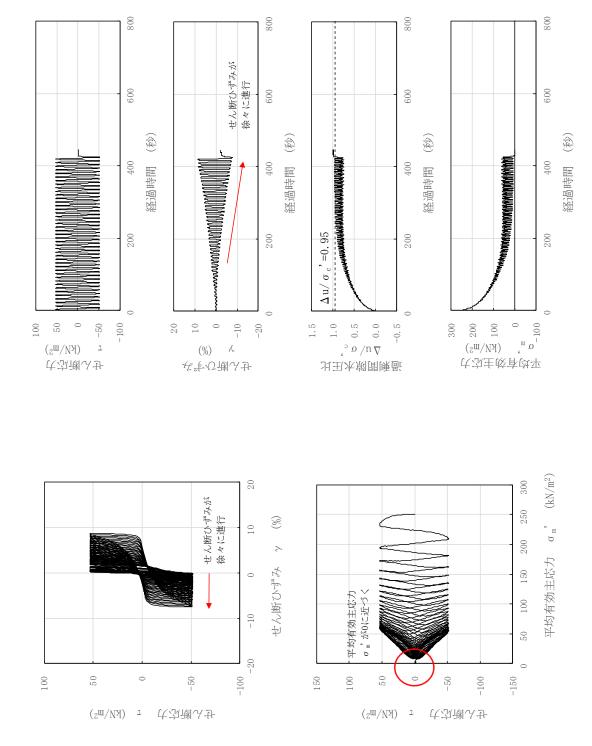
20

2 (KN/M²)

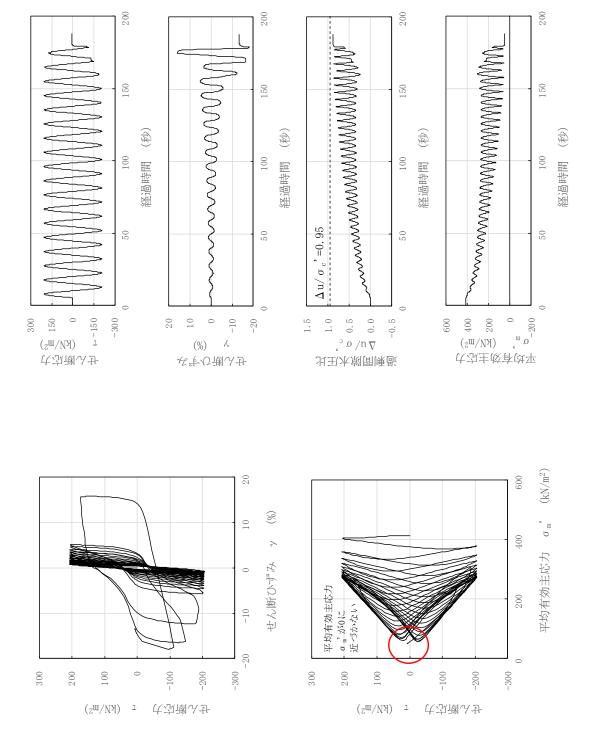
20

(KN/M2)

-50


大為樹人步

-100


100

-100

大沟横人步



2-4 液状化試験結果(沖積層下部, GTG-S6-⑤, GL.-11.70~14.70m, 有効拘束圧 250kN/m², せん断応力比=0.211) ×



液状化試験結果(A2s層,FS02-2-8,GL.-22.70~22.85m,有効拘束圧412kN/m²,せん断応力比=0.499) 2 - 5X

## (参考資料4) 地震応答解析にて考慮する地盤物性のばらつき

1. 建物・構築物の地震応答解析における地盤物性のばらつき

建物・構築物の地震応答解析においては、構造物の周囲に分布する第四系及び支持層である新 第三系に対し、せん断波速度の変動係数に基づくばらつきを考慮した耐震評価を実施する。

なお、地盤物性のばらつきの設定は、建物・構築物の設置位置に応じて、下記のグループごとに設定した。以降にグループごとの設定方法を記す。

- ・原子炉建屋、タービン建屋、コントロール建屋、廃棄物処理建屋、大物搬入建屋、格納容器 圧力逃がし装置基礎、サービス建屋
- ・緊急時対策所,5号機タービン建屋

1.1 原子炉建屋, タービン建屋, コントロール建屋, 廃棄物処理建屋, 大物搬入建屋, 格納容器 圧力逃がし装置基礎, サービス建屋

### (1) 西山層について

図 1-1 に西山層を対象とした炉心ボーリングの PS 検層結果に基づく標準偏差を示す。 これより、西山層のせん断波速度の変動係数は 10% ([変動係数] = [標準偏差] ÷ [平均値] = 61/649 = 0.094) より、西山層のばらつきは 10%に設定した。

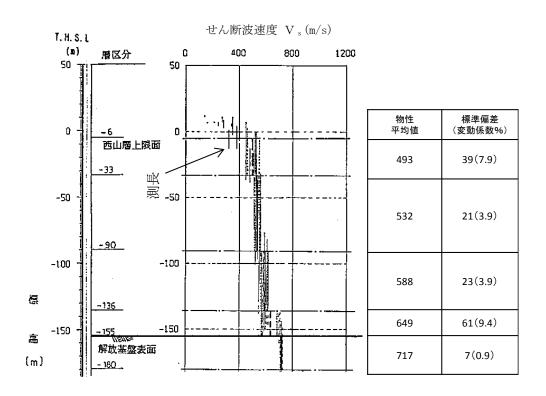



図 1-1 せん断波速度変動係数 (6,7 号機原子炉建屋の炉心ボーリング)

## (2) 古安田層について

表 1-1 に古安田層を対象とした炉心ボーリングの PS 検層結果に基づく標準偏差を示す。これより、古安田層のせん断波速度の変動係数は 25% ([変動係数] = [標準偏差]÷ 「平均値]=71/330=0.215) より、古安田層のばらつきは 25%に設定した。

表 1-1 古安田層のせん断波速度の標準偏差

	PS検層	せん断波速度			
号機	調査長さ	$V_s$ (m/s)			
	(m)	平均値	標準偏差		
6, 7	41	330	71		

## (3) 新期砂層について

表 1-2 に新期砂層を対象としたボーリングの PS 検層結果に基づく変動係数を示す。図 1-2 に新期砂層の PS 検層位置を示す。これより、新期砂層のせん断波速度の変動係数は 13%より、新規砂層のばらつきは 13%に設定した。

表 1-2 新期砂層の変動係数

地層	平均せん断波速度	変動係数	データ数	
地情	(m/s)		n	
新期砂層	222	0. 127	12	

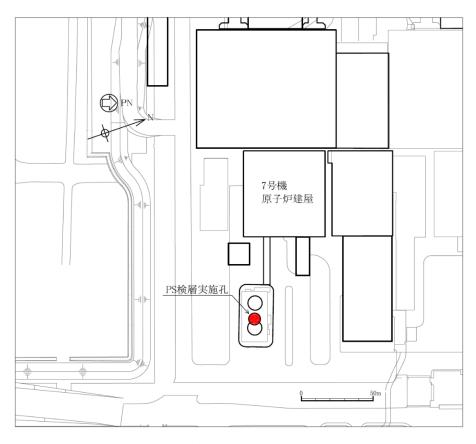



図 1-2 新期砂層の PS 検層位置

## 1.2 緊急時対策所,5号機タービン建屋

### (1) 古安田層・西山層について

ばらつきは、設計用の水平成層化を予め行い、各ボーリング孔のせん断波速度に対して層厚をデータ数とみなした重み付けを行う方法により算定した。表 1-3 に古安田層及び西山層の地盤剛性 $G_0$ の変動幅を示す。これより、地盤盤剛性 $G_0$ の変動係数の最大値は、下部西山層の 19.5%である。したがって、せん断波速度の変動係数は、 $G=\rho\cdot Vs^2$  より、11%(せん断波速度変動上限: $\sqrt{1+0.195}-1=0.093\to10\%$ 、せん断波速度変動下限: $1-\sqrt{1-0.195}=0.102\to11\%$ より)のため、古安田層及び西山層のばらつきは、11%と設定した。

数1 0 日英田信 日田信 V. Z. 园门工 G () V 交易 M 级										
T. M. S. L.	γ _t の 平均値	γ t の 標準 偏差	V _s の 平均値	V _s の 標準 偏差	γ _t の 変動 係数	V _s の 変動 係数	G ₀ の 平均値	G ₀ の 変動	設計用 のG ₀ 値	G ₀ の設計値に対 する変動係数
地層	${\gamma_t}$ $(t/m^3)$	$\sigma_{\gamma t} = (t/m^3)$	$\frac{\overline{V}_{s}}{(m/s)}$	$\sigma_{Vs}$ $(m/s)$	$\alpha_{\gamma t}$	$\alpha_{Vs}$	$\overline{G}_0$ $(t/cm^3)$	*1	$G_0$ $(t/cm^3)$	*2 (%)
6.0	1.78	0. 065	306. 5	12. 6	0. 0365	0. 0411	1. 706	1. 909	1.75	9. 1
古安田層 -9.0	1.10	0.000	300.0	12.0	0.0000	0.0411	1.700	1. 503	1. 10	-14. 1
西山層(1)	1.70	0. 03	492. 7	28. 4	0.0176	0. 0578	4. 211	4. 772	4. 17	14. 4
-60.0								3. 650		-12. 5
西山層(2)	1.75	0. 03	560. 1	21. 3	0.0171	0. 0380	5. 602	6. 124	5, 60	9. 3
-100.0	1.10	0.00	555.1	21.0	0.0111	0.000	0.302	5. 080	0.00	-9. 3
T.1.12 (0)	1.78	0, 02	566. 5	6. 7	0. 0112	0. 0118	5. 828	6. 031	6. 99	-13. 7
西山層(3)	1.10	0.02	300.3	0.1	0.0112	0.0110	J. 020	5. 625	0. 55	-19. 5

表 1-3 古安田層・西山層の地盤剛性 G₀の変動係数

注記*1 :上段: $G_0(1+\alpha_{yt}+2\alpha_{ys})$ ,下段 $G_0(1-\alpha_{yt}-2\alpha_{ys})$ 

*2 : 上段 :  $\{\overline{G_0}(1+\alpha_{yt}+2\alpha_{ys})/G_0-1.0\}\times 100, \ \text{下段}\{\overline{G_0}(1-\alpha_{yt}-2\alpha_{ys})/G_0-1.0\}\times 100\}$ 

### (2) 埋戻土について

「2.1.1 FLIPにおける初期せん断弾性係数 $G_0$ のばらつきの設定方法」に示す。

2. 土木構造物の地震応答解析における地盤物性のばらつき

土木構造物の耐震評価にあたっては、構造物の周囲に分布する埋戻土、埋戻土Ⅱ,沖積層及び 古安田層に対し、初期せん断弾性係数G₀のばらつきを考慮した耐震評価を実施する。

 $G_0$ のばらつきは、PS 検層の実測値に基づき算定する。また、 $G_0$ のばらつきの算出においては、地盤中の地下水の有無を考慮して適切な算定方法を適用する。なお、建物・構築物において有効力解析を実施する場合の $G_0$ のばらつきの考え方も同様である。

- 2.1 初期せん断弾性係数G₀のばらつきの設定方法
- 2.1.1 FLIPにおける初期せん断弾性係数G₀の考え方

土木構造物の耐震評価に用いる解析コードFLIPでは、 $G_0$ は(式 1)のように定義される。

$$G_0 = G_{ma} \cdot (\sigma_m' / \sigma_{ma'})^m \tag{\ddagger 1}$$

ここで.

σ ", :基準平均有効拘束圧

 $\sigma_m$ ': 有効拘束圧

 $G_m$ : 基準初期せん断弾性係数  $(\sigma_m) = \sigma_m$  における値)

m : 初期せん断弾性係数G₀の有効応力依存性を示す係数

- (1) 地下水位を跨ぐ地層(埋戻土,新期砂層)における $G_0$ のばらつきの設定方法  $G_0$ のばらつきは,PS 検層の実測値に基づき, $G_0$ と $\sigma_m$ 'の標準偏差 $\sigma$ を算出する。さら に,(式 1)における $G_m$ 及びmを標準偏差 $\pm 1\,\sigma$ を考慮した回帰係数として考慮する。 地下水位を跨ぐ地層における,PS 検層の実測値に基づく $G_0$ のばらつきの設定方法を以下に示す。
  - ① 各深度の初期せん断弾性係数 $G_{0i}$  について、PS 検層による各深度のせん断波速度  $V_{si}$  と各地層の質量密度  $\rho$  により(式 2)に基づき算定する。なお、 $\rho$  は地下水位以 浅については湿潤密度、地下水位以深については飽和密度とする。 $\sigma_{m}$  'は、(式 3)、(式 4)により算定する。

$$G_{0i} = \rho \cdot V_{si}^2 \tag{$\not \equiv $2$}$$

$$\sigma_{\text{m}}' = \frac{\sigma_{\text{v}}' + \sigma_{\text{h}}'}{2} = \frac{\sigma_{\text{v}}' + K_{\text{0}} \cdot \sigma_{\text{v}}'}{2} = \frac{1 + K_{\text{0}}}{2} \cdot \sigma_{\text{v}}' \qquad (\vec{x} \vec{\zeta} 3)$$

$$K_0 = 0.5$$
 (£4)

ここで,

ρ : 各地層の質量密度(地下水位以浅=湿潤密度,地下水位以深=飽和密度)

σ v': 鉛直有効応力(有効上載圧)

σ h': 水平有効応力Κ ω: 静止土圧係数

②  $G_{0i}$  と各深度の平均有効主応力 $\sigma_{mi}$ "の回帰曲線を、(式 5) に示す指数関数の式で表す。なお、 $G_{ma}$ に対応する基準平均有効拘束圧 $\sigma_{ma}$ "は 98kPa とする。

$$G_{0}(\sigma_{m}') = G_{ma} \cdot (\sigma_{m}' / \sigma_{ma}')^{m}$$
 (₹5)

ここで,

 $\sigma_{ma}$ ': 基準平均有効拘束圧( $\sigma_{ma}$ ' = 98kPaとする)

G_{ma}: 基準平均有効拘束圧における初期せん断弾性係数

- ③ ②の指数関数式について、 $G_0$ と $\sigma_m$ 'の関係を整理し、最小二乗法による線形回帰を行い、係数mを算定する。
- ④ ③で算出した $\sigma$ により、 $\sigma$  ma 'における平均値±1  $\sigma$ に対応する(式 1)の係数G ma を 算定する。

(2) 地下水位以深の飽和土層における初期せん断弾性係数 $G_0$ のばらつきの設定方法  $G_0$ のばらつきは、PS 検層の実測値に基づき、せん断波速度 $V_s$ の $\sigma$ に基づき算定する。 なお、 $\rho$  は飽和密度とする。

地下水位以深の飽和土層における、PS 検層の実測値に基づくG₀のばらつきの設定方法を以下に示す。

① PS 検層から得られた各地層のせん断波速度 $V_{sj}$ のデータ数をK個(j =1, 2, ..., K)とすると、 $V_{sj}$ の $\sigma$ は(式 6)で求められる。

$$\sigma = \sqrt{\frac{1}{K-1} \sum_{j=1}^{K} \left\{ V_{s,j} - V_{s, \mp b/\bar{b}} \right\}^2}$$
 (式 6)

ここで

K: 各地層のせん断波速度 Vsのデータ数

Vsi: 各深度のせん断波速度Vs

V_{s平均値}:各地層のせん断波速度V_sの平均値

② V_sのばらつきを考慮した係数G_mは(式7)より求められる。

$$G_{ma} = \rho \cdot (V_{s} \pm 1 \sigma)^{2} \tag{\ddagger 7}$$

③ 係数 σ m²には、各地層の基準平均有効拘束圧(地層中心の有効拘束圧の平均値)を 用いる。なお、係数mについては、文献*を参考に一般値の 0.5 とした。

注記* : 森田年一, 井合進, Hanlong Liu, 一井康二, 佐藤幸博: 液状化による構造物 被害予測プログラム FLIP において必要な各種パラメタの簡易設定法, 港湾技 研資料 No. 869, 1997.

# 2.1.2 初期せん断弾性係数G₀のばらつきの設定結果

表 2-1 に、2.1.1 の(1)及び(2)の設定方法に基づき算定した $G_0$  のばらつきの算定結果を示す。また、図 2-2~図 2-11 に、各地層の PS 検層結果と $G_0$ の深度分布に応じた $\sigma_m$ '依存式(平均及び $\pm 1\sigma$ )を示す。

表 2-1 ばらつきを考慮した $G_0$ の係数

地層名			基準平均	G ₀ のσ _m 'に対する依存式			
		密度	有効拘束圧	$G_0 = G_{ma} \times (\sigma_m' / \sigma_{ma}')^m (kN/m^2)$			$\kappa N/m^2$ )
		$\rho$ (g/cm ³ )	σ _{ma} ,	係数Gma	係数Gma	係数Gma	係数m
			$(kN/m^2)$	(平均)	(平均+1σ)	(平均-1σ)	
埋戻土	不飽和	1. 79	98	104000	160000	67500	0.43
4 庆工	飽和	1.94	90				
埋戻土Ⅱ	飽和	1.71	41	41 73300		62400	0.50
新期砂層	不飽和	2.00	98	126000	155000	103000	0.35
利规划值	飽和	2.05	90				
沖積層上部 (シルト質)	飽和	1.66	170	55000	58000	52000	0.50
沖積層上部(砂質)	飽和	1. 90	110	125000	184000	76800	0.50
沖積層下部	飽和	2.02	150	192000	266000	129000	0.50
A3c層	飽和	1.70	60	109000	124000	94700	0.50
A3a1層	飽和	1.81	94	95700	131000	66000	0.50
A2c層	飽和	1.80	140	139000	184000	100000	0.50
A2a1層	飽和	1.88	170	161000	202000	125000	0.50
A2s層 飽和		1.91	200	214000	259000	174000	0.50

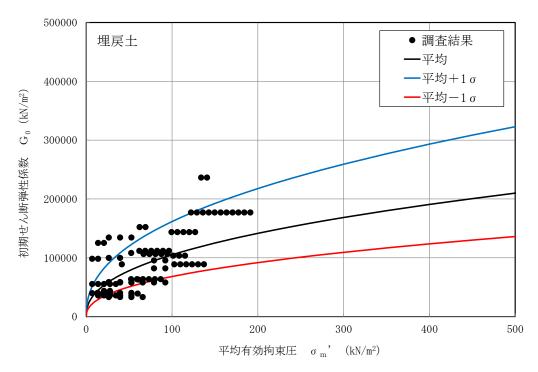



図 2-1 G₀の σ m' 依存式 (埋戻土)

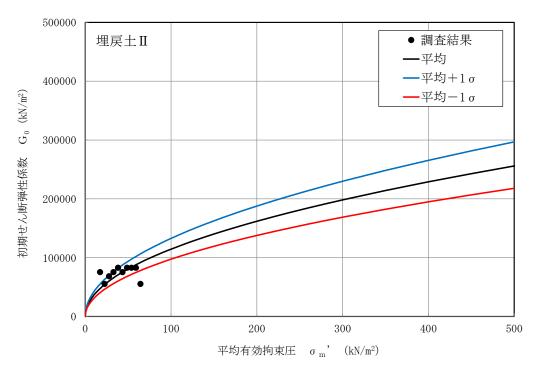



図 2-2 G₀の σ m' 依存式 (埋戻土Ⅱ)

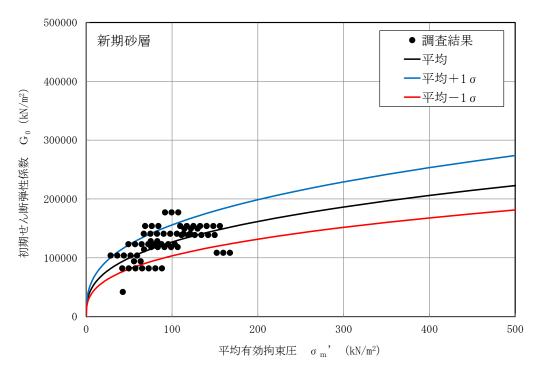



図2-3 G₀の σ m' 依存式 (新期砂層)



図 2-4  $G_0$   $\sigma_m$ ' 依存式 (沖積層上部 (シルト質))

203

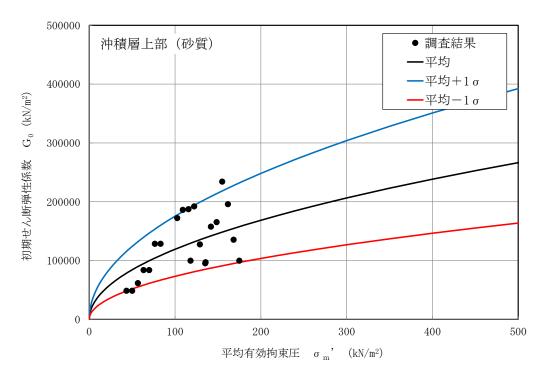



図 2-5 G₀のσ_m'依存式(沖積層上部(砂質))

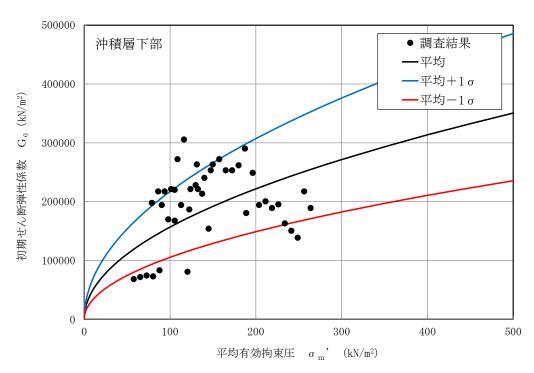



図 2-6  $G_0$   $\sigma_m$ ' 依存式 (沖積層下部)



図 2-7  $G_0 O \sigma_m$ '依存式 (A3c 層)

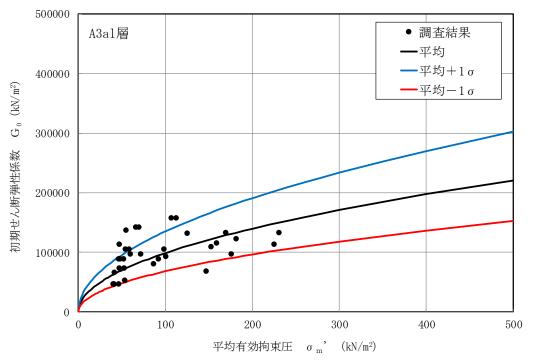



図 2-8 G₀のσ_m'依存式 (A3a1 層)

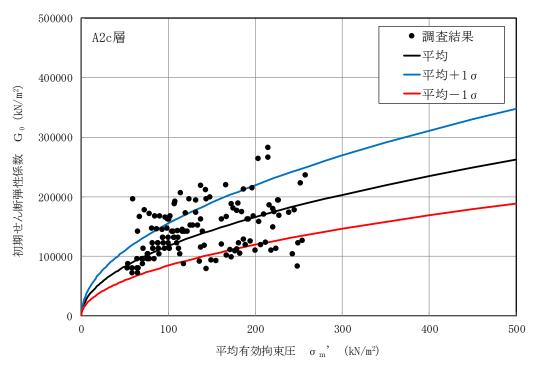



図 2-9  $G_0$   $O_m$ ' 依存式 (A2c 層)

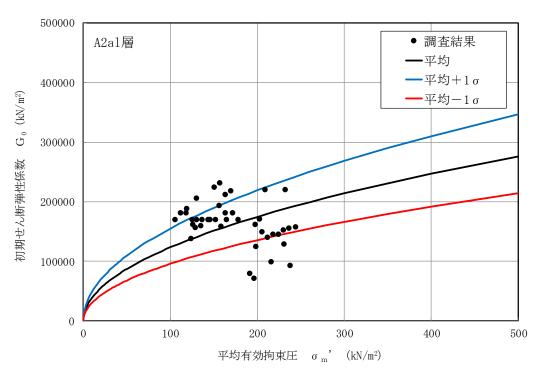



図 2-10 G₀のσ_m'依存式 (A2a1 層)

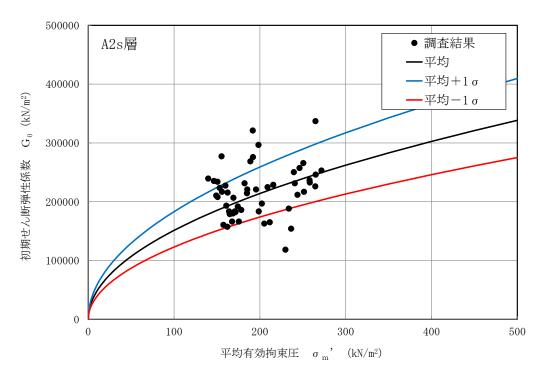



図 2-11 G₀の σ m'依存式 (A2s 層)

#### 2.2 液状化強度特性のばらつき

土木構造物の耐震評価にあたっては、地震時の有効応力の変化に応じた影響を適切に評価できる有効応力解析を実施する。有効応力解析に用いる液状化強度特性は、敷地の地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定する。なお、建物・構築物において有効力解析を実施する場合の液状化強度特性のばらつきの考え方も同様である。

### 2.2.1 液状化強度試験データの回帰式の設定

設定する液状化強度特性は、試験データのばらつきを考慮し、液状化強度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いた「回帰曲線 $-1\sigma$ 」について整理する。

液状化強度試験データの回帰式として、回帰係数 a, b を用いた常用片対数の指数関数を (式 8) に示す。

$$R_{L}(N) = a \cdot (\log_{10} N)^{b} \tag{$\sharp$ 8}$$

ここで,

R_L(N):繰り返し載荷回数Nにおけるせん断応力比

N :繰り返し載荷回数

液状化強度試験のせん断応力比  $\tau/\sigma_m$ (=R_L)と繰り返し載荷回数Nの関係のデータは,K個の繰り返し載荷回数N $_j$ (j=1,2,...,K)に対応して与えられるものとし,これらの実測値をR_L(N $_j$ ) experiment と表記し,最小二乗法により係数 a,b の値が定められた(式 8)の液状化強度回帰式の出力をR_L(N $_j$ )と表記すると,各土質材料の液状化強度特性の標準偏差  $\sigma$  は(式 9)で求められる。

$$\sigma = \sqrt{\frac{1}{K-2} \sum_{j=1}^{K} \left\{ R_L \left( N_j \right) - R_L \left( N_j \right)_{experiment} \right\}^2}$$
 (£ 9)

(式8),(式9)より,各土質材料の液状化強度試験データのばらつきを考慮した保守側の液状化強度近似曲線は,(式10)により求められる。

$$R_{L}(N)_{-1\sigma} = a \cdot (\log_{10} N)^{b} - 1\sigma \qquad (\not \equiv 10)$$

ここで,

 $R_L(N)_{-1\sigma}$ :液状化強度回帰式  $(-1\sigma)$  に対応する繰り返し載荷回数Nにおけるせん 断応力比

## 2.2.2 有効応力解析に用いる地盤の液状化強度特性のばらつき

土木構造物の耐震評価においては、(式 10) による地盤の液状化強度特性 ( $-1\sigma$ ) を考慮した有効応力解析を実施することを基本とする。

また、上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として、 地盤の非液状化の影響を考慮する場合は、非液状化の条件(最も液状化強度が大きい場合 に相当)を仮定した解析を実施する。

# 2.3 地盤剛性及び液状化強度特性のばらつきを考慮した解析ケース

地盤剛性のばらつき及び地盤の液状化強度特性のばらつきの影響を考慮するため、表 2-2 に示す解析ケース (①~⑤) を設定する。

	1	2	3	4	(5)
解析ケース	基本ケース	地盤物性のば らつき (+1σ) を考慮した解 析ケース	地盤物性のば らつき (-1σ) を考慮した解 析ケース	非液状化の条件を仮定した 解析ケース	地盤物性のば らつき (+1σ) を考慮して非 液状化の条件 を仮定した解 析ケース
地盤剛性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性 (平均値)	地盤剛性
設定	(平均値)	(+1σ)	(-1σ)		(+1σ)
液状化強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
特性の設定	特性(-1σ)	特性(−1σ)	特性(−1σ)	ータを非適用	ータを非適用

表 2-2 耐震評価における解析ケース

地盤剛性のばらつきの影響を考慮するため、地表付近で地下水面をまたぐ地層(埋戻土及び新期砂層)のばらつきは、初期せん断弾性係数と有効拘束圧の関係から初期せん断弾性係数の標準偏差 $\sigma$ を用いて、せん断波速度のばらつきとして設定する。地下水以深の飽和土層(埋戻土 $\Pi$ 、沖積層及び古安田層)のばらつきは、各地層の PS 検層の結果からせん断波速度の標準偏差 $\sigma$ を求め、せん断波速度のばらつきとして設定する(解析ケース②,③,⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散に基づく標準偏差 $\sigma$ を用いて、液状化強度特性を $(-1\sigma)$ にて設定する(解析ケース①,②,③)。

また、構造物及び機器・配管系への加速度応答に対する保守的な配慮として、地盤の非液 状化の条件を仮定した解析ケースを設定する(解析ケース④、⑤)。

上記の地盤剛性及び液状化強度特性の設定を組み合わせた解析ケース (①~⑤) を実施することにより、地盤物性のばらつきの影響を網羅的に考慮する。

有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を適切に表現できる双曲線モデル(H-D モデル)を用いる。

(参考資料5) 有効応力解析に用いる解析用物性値の適用性について

## 1. 概要

「4.2.2 有効応力解析に用いる解析用物性値」で設定した地盤の液状化強度特性に対して、耐震評価への適用性を確認するため、2007 年 7 月 16 日に発生した新潟県中越沖地震の地震記録を入力波とした解析コードF L I Pによる有効応力解析を行い、当該地震時に敷地内で観察された地盤変状と比較する。検討フローを図 1-1 に示す。

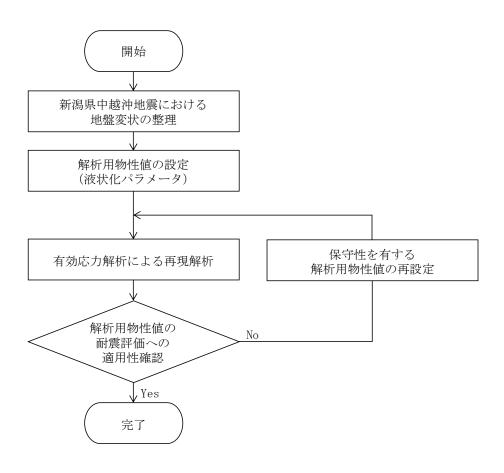



図1-1 解析用物性値の適用性検討のフロー

211

#### 2. 新潟県中越沖地震と敷地内地盤変状

#### 2.1 新潟県中越沖地震の概要

2007 年 7 月 16 日午前 10 時 13 分頃, 新潟県中越沖において, 大きな地震が発生し, 新潟県と長野県で最大震度 6 強を観測した他, 北陸地方を中心に東北地方から近畿・中国地方にかけて広い範囲で地震動が観測された。気象庁発表(平成 19 年 7 月 地震・火山月報(防災編))によれば,マグニチュードは 6.8, 震源の深さは 17km であり, 震央距離 16km, 震源距離約 23km に位置していた柏崎刈羽原子力発電所は地震発生により大きな地震動を受けた。新潟県中越沖地震の震央と柏崎刈羽原子力発電所の位置を図 2-1 に示す。

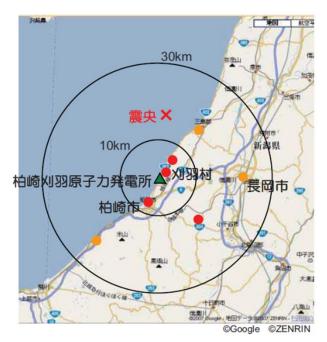



図 2-1 新潟県中越沖地震の震央と柏崎刈羽原子力発電所の位置 (出典:柏崎刈羽原子力発電所 5 号機 新潟県中越沖地震後の設備健全性に係る 点検・評価報告書(建物・構築物編))

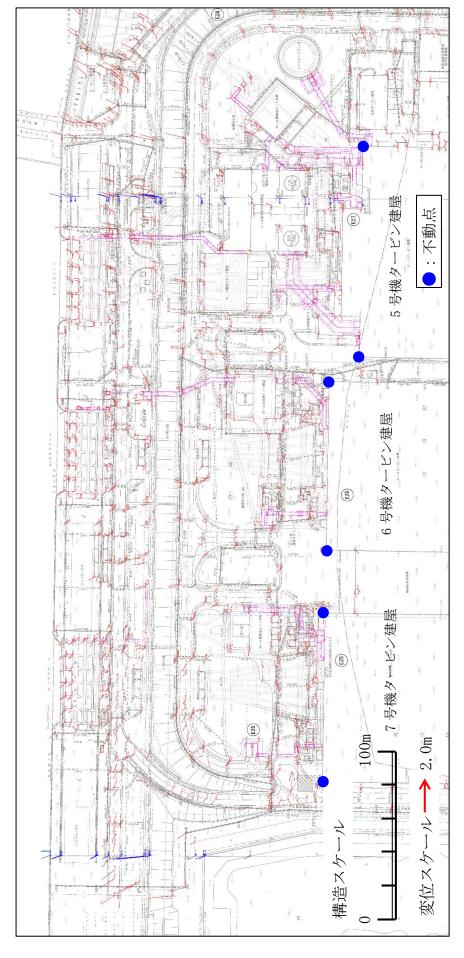
2.2 新潟県中越沖地震における柏崎刈羽原子力発電所(大湊側)の敷地内地盤変状について 新潟県中越沖地震における敷地内の地盤変状について,地震前後(2006年4月,2007年 10月)に撮影された航空写真測量データに基づき作成した図のうち,図 2-2 に亀裂・噴砂 位置,図 2-3 に地盤水平変動,図 2-4 に地盤鉛直変動を示す。なお,本項では柏崎刈羽原 子力発電所の大湊側の敷地において観察された地盤変状について示す。

### 2.2.1 亀裂·噴砂

敷地山側の駐車場付近に噴砂が確認されている。敷地の海側エリアでは護岸のはらみ出しが確認されており、地下水位以深の埋戻土の液状化に起因するものと考えられる。地表面に発生した亀裂の多くは直線状に発生しており、地中埋設物の存在による埋戻土の相対沈下や法面の変状の影響であると考えられる。

## 2.2.2 地盤水平変動

地盤水平変動については、6号機及び7号機の原子炉建屋及びタービン建屋周辺の水平変位量は比較的小さい。一方、護岸近傍の海側エリアでは、その形状と埋戻土の影響から、0.5mを超える海側への水平変位が確認されている箇所もある。また、法面近傍では亀裂が生じている箇所も多く、比較的大きな水平変位が認められている。


## 2.2.3 地盤鉛直変動

敷地における特徴的な地盤鉛直変動としては,5 号機海水熱交換機器建屋近傍で最大約1.0mの沈下が確認されている。6 号機及び7号機の原子炉建屋及びタービン建屋周囲では顕著な沈下はなかった。建屋近傍や段差個所等の局所的な沈下を除けば,沈下量は最大で0.3~0.5m程度であった。



214

(参考) 5-4



:変位量は,「2006 年 4 月撮影」と「2007 年 10 月撮影」の航空写真測量結果の差分から算定している。 :測量における不動点は,原子炉建屋・タービン建屋の隅角部としている。(大湊側は10点) 注 1* c3 *

図2-3 新潟県中越沖地震における敷地内の地盤水平変動図

(参考) 5-5 215



地震・津波, 地質・地盤合同 WG (第4回) (2008) に一部加筆) (耐震·構造設計小委員会

(参考) 5-6 216

#### 3. 有効応力解析による再現解析

#### 3.1 有効応力解析による地盤変位の再現解析

新潟県中越沖地震の地震記録を入力波とした有効応力解析を行い、当該地震時に敷地内で 観察された地盤変状と比較することで、解析用物性値の適用性について確認する。

有効応力解析の解析コードは、解析コードFLIP (ver. 7.4.1) を用いる。

## 3.1.1 解析条件

#### (1) 解析断面

解析断面は、大湊側の海側エリアの中で、西山層上限面が深く、比較的大きな地盤変状が認められた断面を選定した。解析断面位置を示した平面図を図 3-1 に、地質断面図を基に作成した解析モデルを図 3-2、図 3-3 に示す。

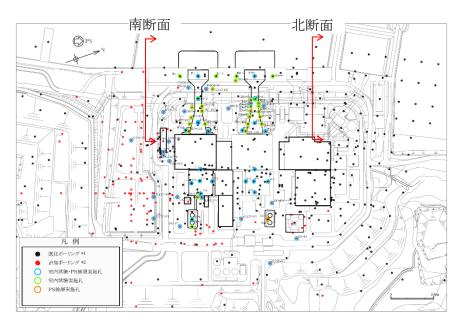



図 3-1 再現解析における解析断面位置

### (2) 地下水位設定

耐震評価に用いる地下水位設定は,観測記録に基づき保守性を考慮して観測記録の最高水位よりもさらに高く,例えば護岸部で T. M. S. L. 3.0m (地表面) に設定している。しかし,この設定では液状化範囲が広くなることにより地盤変位が大きくなるため,再現解析の評価として適さないものと考えられる。したがって,再現解析においては,海側の地下水観測孔(MW-1 孔,7GW-5 孔,7GW-6 孔,6GW-3 孔)の年間平均地下水位(2018 年) T. M. S. L. 0.42 ~ 1.24m と,既工認における地下水位 T. M. S. L. 1.0m を参考にして,護岸より陸側を一律 T. M. S. L. 1.0m と設定する。また,海水位は T. M. S. L. 0.0m とする。

(参考) 5-7 217

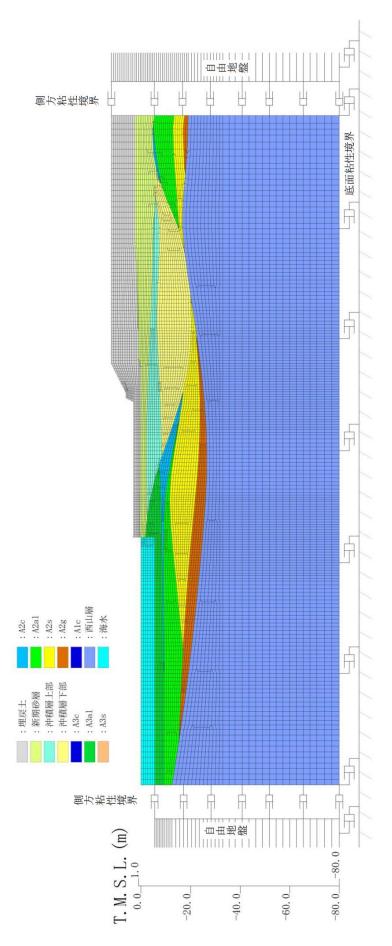




図3-2 再現解析の解析モデル (北断面)



(参考) 5-9

図3-3 再現解析の解析モデル (南断面)

#### (3)入力地震動

入力地震動は、新潟県中越沖地震において原子炉建屋で観測された地震記録を解析モデ ル下端 (T.M.S.L.-80m) に引き戻した地震動を用いる。(北断面) は 5 号機原子炉建屋, (南断面) は7号機原子炉建屋で観測された地震記録を用いた。図3-4,図3-5に入力 地震動の水平・鉛直の時刻歴を示す。

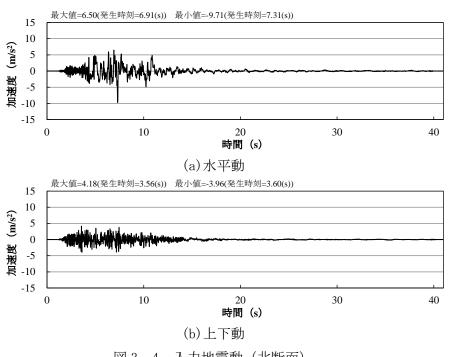



図 3-4 入力地震動(北断面)

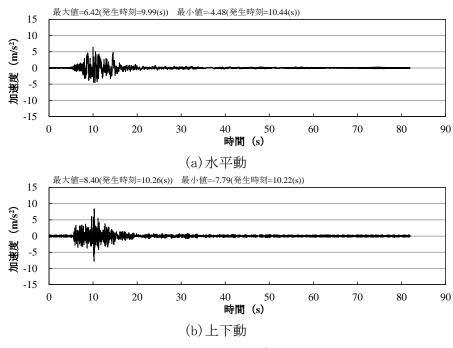
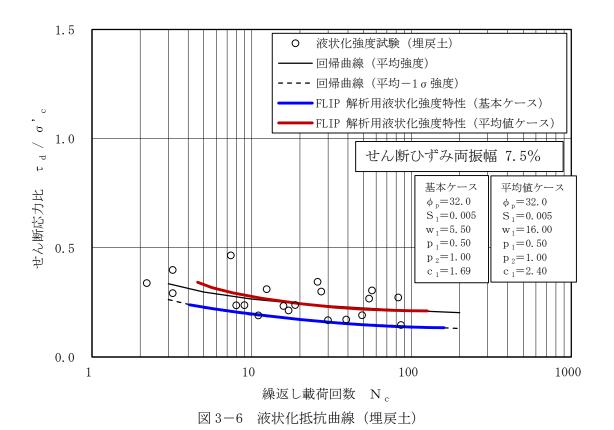



図 3-5 入力地震動(南断面)

## (4) 解析用物性値(液状化パラメータ)の設定


耐震評価に用いる解析用物性値は、保守性を考慮するため、地盤の液状化強度特性のばらつきを踏まえ、液状化強度試験の「回帰曲線 $-1\sigma$ 」に基づいて液状化パラメータを設定している。再現解析においては、解析コードの再現性と適用性に着目することから、「回帰曲線(平均値)」に基づいて液状化パラメータを設定する。

本検討では、「4.2.2 有効応力解析に用いる解析用物性値」に示した解析用物性値を『基本ケース』とし、液状化強度試験の平均値に基づき設定した解析用物性値を『平均値ケース』とする。表 3-1 に再現解析における「平均値ケース」の解析用物性値を、図 3-6~図 3-10 に液状化強度特性をまとめる。なお、比較のため、「基本ケース」の結果も併記する。

表 3-1 再現解析に用いる解析用物性値(液状化検討対象層:平均値ケース)

地層区分			新	期砂層・沖積	督	古安田層				
	物性値		埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層
物理特	密度 ρ	$(g/cm^3)$	1. 94 (1. 79)	2. 05 (2. 00)	1.90	2. 02	1. 91	1.91	1.91	1. 91
特性	間隙率 n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数 G _{ma}	$(kN/m^2)$	$1.04 \times 10^5$	1. $26 \times 10^5$	$1.25 \times 10^5$	$1.92 \times 10^5$	$2.14 \times 10^5$	$2.14 \times 10^5$	$2.14 \times 10^5$	$2.14 \times 10^5$
変形	基準平均有効拘束圧 σ _{ma} ,	$(kN/m^2)$	98. 0	98. 0	110.0	150.0	200.0	200.0	200.0	200.0
特性	ポアソン比 ν		0.33 (0.42)	0.33 (0.44)	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値 h _{max}		0. 225	0.234	0. 247	0. 211	0. 157	0. 157	0. 157	0. 157
強度特	粘着力 c'	$(kN/m^2)$	0. 0 (9. 6)	0.0 (94.4)	0.0	0.0	0.0	0.0	0.0	0.0
特性	内部摩擦角 φ'	(° )	35. 9 (34. 8)	34. 6 (27. 6)	36. 7	35.6	36. 6	36. 6	36. 6	36. 6
	変相角 фр	(° )	32. 0	31.0	33. 0	32.0	32. 0	32. 0	32. 0	32.0
		S 1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化		w1	16.00	13.80	27. 00	17. 30	40.00	40.00	40.00	40.00
特性	特 液状化パラメータ	$p_1$	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
		$p_2$	1.00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
		$c_1$	2. 40	2.78	3.60	2.65	9. 95	9. 95	9. 95	9. 95

注記:括弧内の数字は,地下水位以浅の数値を表す。





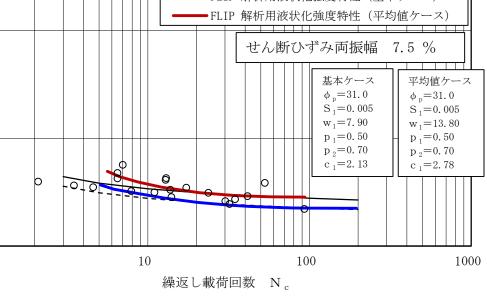



図 3-7 液状化抵抗曲線(新期砂層)

0.0

1

(参考) 5-12 222

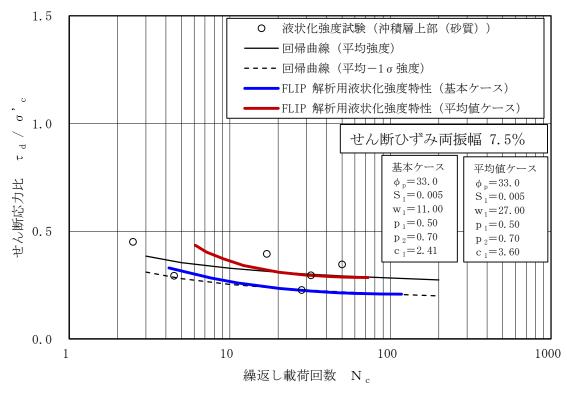



図 3-8 液状化抵抗曲線(沖積層上部(砂質))

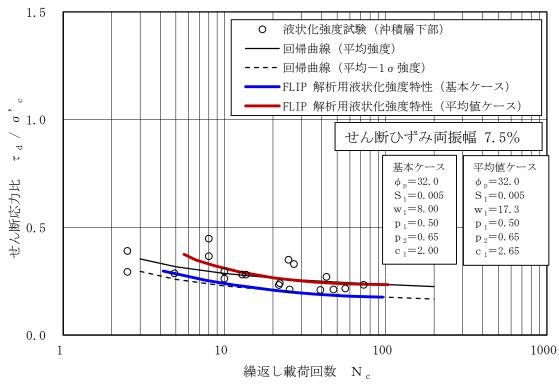



図 3-9 液状化抵抗曲線(沖積層下部)

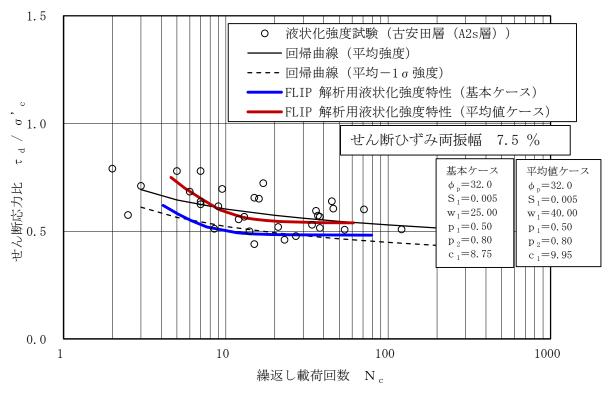



図 3-10 液状化抵抗曲線(古安田層(A2s層))

### (5) 減衰定数

耐震評価に適用する有効応力解析では、履歴減衰と粘性減衰を考慮している。履歴減衰による減衰は、地盤及び構造物の非線形性の程度に応じた値とする。粘性減衰による減衰は、質量マトリックス及び剛性マトリックスの線形結合で表される Rayleigh 減衰にて与える。Rayleigh 減衰の減衰マトリックス([C]) は、質量マトリックス([M]) 及び剛性マトリックス([K]) の線形結合で表される。

 $[C] = \alpha [M] + \beta [K]$ 

ここで, [C]:減衰マトリックス,

[M]: 質量マトリックス,

[K]: 剛性マトリックス,

 $\alpha$ ,  $\beta$ :係数

有効応力解析では、時系列で地盤の1次固有振動数が低振動数側へシフトして行くことから、Rayleigh 減衰の係数 $\alpha$ 、 $\beta$ の両方を用いると、質量比例項の減衰 $\alpha$ [M]の影響により、有効応力解析における減衰定数が低振動数帯で過減衰となる場合がある。

一方,有効応力解析における低振動数帯で減衰  $\alpha$  [M] の影響がない剛性比例型減衰では,地盤の 1 次固有振動数が時系列で低振動数側へシフトしていくのに伴い,1 次固有振動モードに対する減衰定数が初期減衰定数より保守的に小さい側へ変化していくことを考慮できる。

ゆえに、有効応力解析では、地震力による時系列での地盤剛性の軟化に伴う 1 次固有振動数の低振動数側へのシフトに応じて、1 次固有振動モードに対する減衰定数として、初期減衰定数よりも保守的に小さい側のモード減衰定数を適用し、地盤応答の適切な評価が行えるように係数  $\alpha$  を 0 として設定し、低振動数帯で減衰  $\alpha$  [M]の影響がない剛性比例型減衰を採用した。

係数 $\beta$ については、北断面、南断面の解析モデルの共通条件として下端(T.M.S.L.-80m)から地表面までの範囲をモデル化している点を踏まえ、いずれの断面についても係数 $\beta$ を 0.005 と設定する。標準的な係数 $\beta$ の設定方法は、地震被害事例に基づく方法であるとされるため*、再現解析結果と観察された地盤変状と比較することで、係数 $\beta$ が適切な保守性を有することを確認する。

注記*: FLIP 研究会 14 年間の検討成果のまとめ「理論編」

#### 3.1.2 解析結果

再現解析により得られた「水平変位量」「鉛直変位量」を観測記録と比較し、解析用物性 値の再現性と適用性を確認する。

## (1) 再現解析結果(水平変位量)

有効応力解析による地表面水平変位量の結果を図 3-11, 図 3-12 に示す。図の水平座標は護岸からの距離で示している。

#### a. 基本ケース

北断面の基本ケースについて,護岸天端における地表面水平変位は「1.63m」となり, 地震後に観察された変位である「0.59m」と比較して2.7倍も大きな変位量となった。護 岸から離れた位置においても,実績に比して大きな水平変位量が得られている。

南断面の基本ケースについて,護岸における地表面水平変位はで「1.14m」となり,地 震後に観察された変位である「0.53m」と比較して2.1倍も大きな変位量となった。護岸 から離れた位置においても、実績に比して大きな水平変位量が得られている。

したがって,基本ケースで設定している解析用物性値は,変形量の観点から十分な保 守性を有していると判断できる。

#### b. 平均値ケース

北断面の平均値ケースについて,護岸天端の地表面水平変位「1.34m」は,地震後に観察された変位である「0.59m」と比較して2.2倍以上の変位量となった。平均的な液状化強度特性を設定した場合でも実測値よりも大きな変位となった。

南断面の平均値ケースについて,護岸の地表面水平変位「0.90m」は,地震後に観察された変位である「0.53m」と比較して1.6倍以上の変位量となった。平均的な液状化強度特性を設定した場合でも実測値よりも大きな変位となった。

実際の変位量と比較して解析結果の方が大きな変位が得られた要因としては、保守性を考慮した液状化強度特性にあると考えられる。過剰間隙水圧比及び最大せん断ひずみ分布を図 3-13~図 3-20 に示す。新潟県中越沖地震を入力波とした場合、比較的浅い深度にある飽和した液状化検討対象層(埋戻土、新期砂層)で液状化の判断指標である過剰間隙水圧比95%を超えており、大きなひずみが得られている。

今回用いている有効応力解析の解析コードは、変形量の観点からは、液状化試験結果 の平均値を採用した場合にも保守性を有すると判断できる。

以上より、新潟県中越沖地震の再現解析を実施した結果、今回用いている有効応力解析の解析コードは、実測値よりも概ね変位量を大きく評価していることから、耐震評価への適用性を確認した。なお、有効応力解析の耐震評価に用いている解析用物性値は、地盤の液状化強度のばらつきを考慮していることから、変形量の観点から保守性を有していると考えられる。

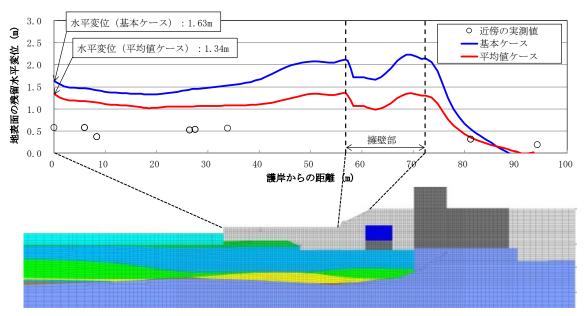



図 3-11 護岸からの距離と地表面水平変位の関係(北断面)

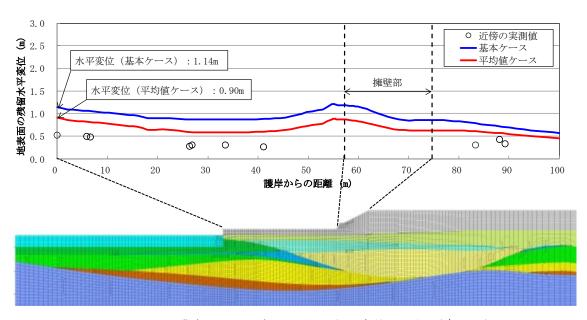



図 3-12 護岸からの距離と地表面水平変位の関係(南断面)

227

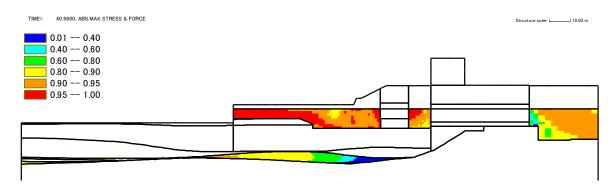



図 3-13 最大過剰間隙水圧(基本ケース)(北断面)

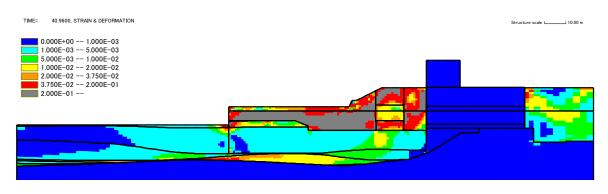



図 3-14 最大せん断ひずみ y max (残留値:基本ケース) (北断面)

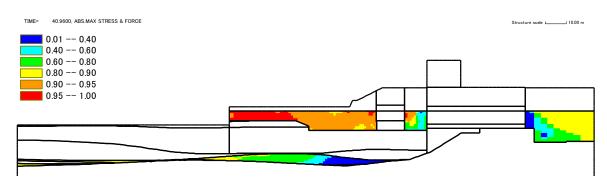



図 3-15 最大過剰間隙水圧 (平均値ケース) (北断面)

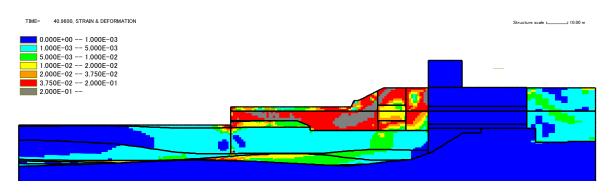



図 3-16 最大せん断ひずみ (残留値:平均値ケース)(北断面)

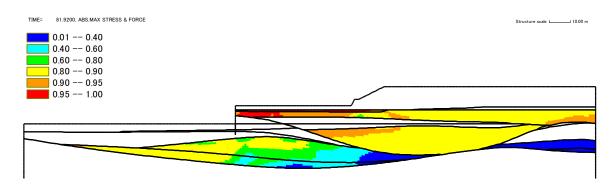



図 3-17 最大過剰間隙水圧(基本ケース)(南断面)

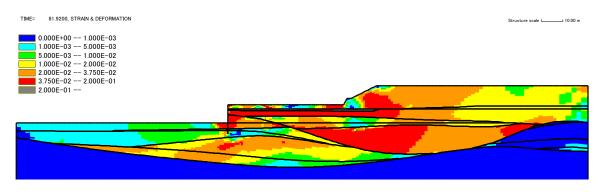



図 3-18 最大せん断ひずみ y max (残留値:基本ケース) (南断面)

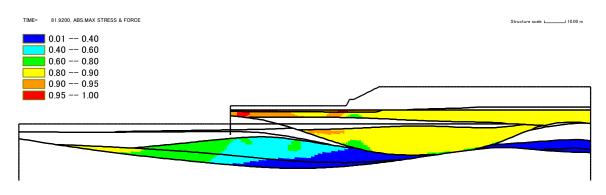



図 3-19 最大過剰間隙水圧 (平均値ケース) (南断面)

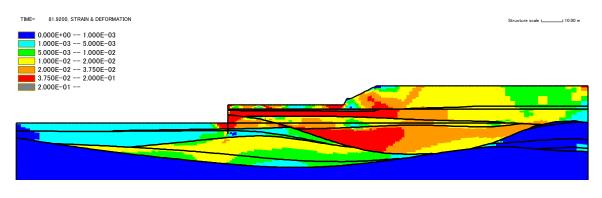



図 3-20 最大せん断ひずみ (残留値:平均値ケース) (南断面)

#### (2) 再現解析結果(鉛直変位量)

有効応力解析による地表面鉛直変位量の結果を、図 3-21、図 3-22 に示す。図の水平 座標は護岸からの距離で示している。

#### a. 基本ケース

基本ケースについては、有効応力解析の鉛直変位量は、地表面形状に応じて側方流動の 影響を受けた沈下と隆起を生じており、新潟県中越沖地震時に観察された実績の沈下量と は異なる傾向を示す。

有効応力解析による護岸付近の鉛直変位量は、北断面で「0.73m」、南断面で「0.49m」であり、側方流動による変形の影響で生じているが、これは実績の沈下量の「0.00m」と比較して大きい。擁壁付近の有効応力解析結果についても、側方流動の影響により法尻で隆起、法肩で沈下しているが、実績沈下量は小さく明瞭な傾向は認められていない。いずれも、有効応力解析では側方流動の影響に伴う鉛直変位量を保守的に算定している。

### b. 平均値ケース

平均値ケースについては、有効応力解析の鉛直変位量は、基本ケースと比較して沈下と 隆起の傾向が抑制されるものの、新潟県中越沖地震時に観察された実績の沈下・隆起量に 対して有効応力解析の地表面変位量が大きいことから、側方流動の影響に伴う鉛直変位量 を保守的に算定している。

以上より,新潟県中越沖地震の再現解析を実施した結果,今回用いている有効応力解析の解析コードは,実測値よりも変位量を概ね大きく評価していることから,耐震評価への適用性を有していると考えられる。なお,有効応力解析の耐震評価に用いている解析用物性値は,地盤の液状化強度のばらつきを考慮していることから,変形量の観点から保守性を有していると考えられる。

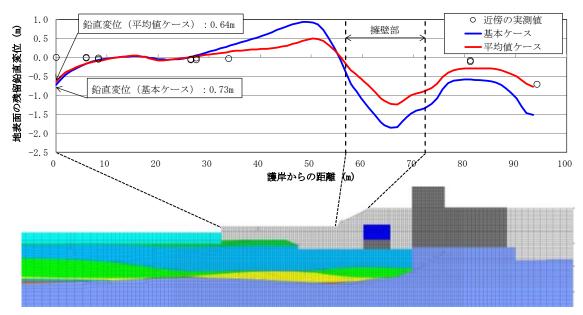



図 3-21 護岸からの距離と地表面鉛直変位の関係(北断面)

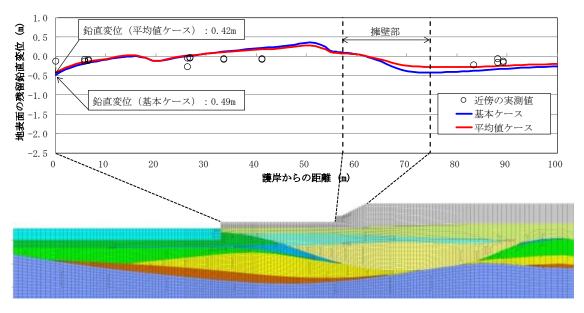



図 3-22 護岸からの距離と地表面鉛直変位の関係(南断面)

## 4. 参考文献

- 1) 小長井ほか:2007年新潟県中越沖地震の被害とその特徴,2010土木学会地震被害調査小委員会,2006年~2010年に発生した国内外の地震被害報告書,2010.
- 2) 東京電力(株): 新潟県中越沖地震に対する柏崎刈羽原子力発電所の耐震安全性の検 討状況について,経済産業省総合資源エネルギー調査会 原子力安全・保安部会耐震・構造 設計小委員会 地震・津波,地質・地盤合同WG,第3回会合配布資料 (合同 W3-1), pp7-9,2007.12.25.
- 3) 東京電力(株): 新潟県中越沖地震に対する柏崎刈羽原子力発電所の耐震安全性の検 討状況について,経済産業省総合資源エネルギー調査会 原子力安全・保安部会耐震・構造 設計小委員会 地震・津波,地質・地盤合同WG,第4回会合配布資料 (合同 W4-1-1),pp10-11,2008.2.15.

## (参考資料6) 地盤改良体における補足

## 1. 地盤改良体の概要

## 1.1 地盤改良工法の種類と適用地盤

地盤改良工法については、文献(陸上工事における深層混合処理工法設計・施工マニュアル 改訂版,(財)土木研究センター、平成16年3月)では、以下の項目により分類づけられる。

- ① 対策工法を必要とする理由,目的,期待する効果
- ② 地盤の性状
- ③ 構造物の性質
- ④ 現場条件,周辺環境

地盤改良工法の種類と適用地盤・効果を表 1-1 に示す。

表 1-1 地盤改良工法の種類と適用地盤・効果

			適用:	地盤		工法の効果					
				粘性土		沈下対策		安定対策			
	工法	粘性土	砂質土		有機 質土	圧密沈 下促進		せん断 変形の 抑制	強度増 加促進	すべり 抵抗の 付与	液状化 の防止
表層処理工法	表層排水工法 サンドマット工法 敷設材工法 浅層混合処理工法	0			0			0	0	0	
置換工法	掘削置換工法 強制置換工法	0		0	0		0	0		0	
押え盛土工法	押え盛土工法 緩斜面工法	0		0	0			0		0	
緩速載荷工法	漸増載荷工法 段階載荷工法	0		0	0			0			
載荷重工法	盛土荷重載荷工法 大気圧載荷工法 地下水低下工法	0		0	0	0			0		
バーチカル ドレーン工法	サンドドレーン工法 ボード系ドレーン工法	0		0	0	0		0	0		
サンドコンパ クション工法	, , , , , , , , , -	0	0	0	0	0	0	0		0	0
締固め工法	振動棒工法 動圧密工法		0				0			0	0
固結工法	深層混合処理工法 生石灰パイル工法 薬液注入工法	0	0	0	0		0	0	0	0	0
構造物による 工法	矢板工法 打設グイ工法 スラブ工法 カルバート工法	0	0	0	0		0	0		0	

(引用:陸上工事における深層混合処理工法設計・施工マニュアル 改訂版, (財)土木研究センター,平成16年3月)

(参考) 6-1 233

表 1-1 に示す工法のうち、柏崎刈羽原子力発電所の建物・構築物及び土木構造物で適用している地盤改良としては、適用地盤や工法の効果とも幅広く適用可能である「固結工法」を基本としている。固結工法のうち、主に採用した工法は深層混合処理工法(機械攪拌工法、高圧噴射攪拌工法)である。

また、一般的に置換工法とは、軟弱地盤を良質な土材料で置き換える工法であるが、土材料として陸上混練したセメント改良土を適用したものについては固結工法と同等又はそれ以上の効果を期待出来ることから採用している。以下、本資料では置換工法のうち、置換する材料としてセメント改良土を適用した工法を「置換工法」という。

なお、深層混合処理工法については、原地盤を攪拌混合する性質上、一般的に土材料の性質によって物性が異なることから、主たる対象土層の性質(砂質土・粘性土)によって分類する。地盤改良工法と対象土層の性質に係わる解釈を表 1-2 に、対象土層の分類を表 1-3 に示す。

			.—> ( ) // // // // // // // // // // // // /		
地	盤改良工法	対象土層の考慮	備考		
置換工法		本庫しない。	地上混練した材料であるため対象		
(セメ	(ント改良土)	考慮しない	土層の影響を受けない。		
	+% +++ +磨+\-\ → ∨+	考慮する	原地盤を攪拌混合する工法のため,		
深層混合	機械攪拌工法	与思り つ	対象土層の影響を受ける。		
処理工法		北南小フ	原地盤を切削攪拌する工法のため,		
	高圧噴射攪拌工法	考慮する	対象土層の影響を受ける。		

表 1-2 地盤改良工法と対象土の性質に係わる解釈

丰	1 — 3	<b>分免</b> 4	層の分類

	地層名	対象土 種別
	埋戻土	砂質土
	埋戻土Ⅱ	粘性土
新沖加	新期砂層	砂質土
1 持	沖積層上部 (シルト質)	粘性土
^優 層	沖積層上部 (砂質)	砂質土
Д	沖積層下部	砂質土
	A3c層	粘性土
	A3a1層	粘性土
	A3s層	砂質土
古	A2c層	粘性土
安	A2a1層	粘性土
田 層	A2s層	砂質土
眉	A2g層(シルト質)	粘性土
	A2g層(砂質)	砂質土
	A1c層	粘性土
	A1g層	砂質土

## 1.2 地盤改良体の施工方法

柏崎刈羽原子力発電所で適用している地盤改良体の施工方法の概要を表 1-4 に示す。

表 1-4 施工方法の概要(1/3)

原地盤を全周回転掘削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  『原地盤を水平多軸網削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  『安定演による孔盤保護を行いながら場別機で規制・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<b>-</b> >4	4orf and				
体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  置換工法 (CD 掘削工法) の概要  原地盤を水平多軸掘削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  ②安定液点域化処理土を投入し、選換で運刷。  「変素ないながら虚 で変え、連続壁を構築。 で変え、連続性を構築。 で変え、 変え、 変え、 変え、 変え、 変え、 変え、 変え、 変え、 変え、	工法	概 要				
で採用。    置換工法 (CD 掘削工法)の概要						
置換工法 (CD 掘削工法) の概要  原地盤を水平多軸掘削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  「安定液による孔壁保護を行いながら環開機で顕削。 ②安定液を流動化処理土に酸表、選続壁を構築。 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※		体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所に				
(CD 掘削工法) で概要  原地盤を水平多軸掘削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  (地中連続壁 工法)  (地中連続壁 工法)  (地中連続壁 工法)  (地中連続壁 工法)  (地中連続壁工法)  (地中進続度工法)  (地中進統度工法)  (地世紀末年) (地世紀		て採用。				
原地盤を水平多軸掘削機で開削し、流動化処理土を投入することで、改良体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  ②安定液を流動化処理土に置換え、連続壁を構築。						
体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  ①安定液による孔壁 保護を行いながら期 の		   置換工法(CD 掘削工法)の概要				
体を造成する工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。  ①安定液による孔壁保護を行いながら掘削機で掘削。  ②安定液を流動化処理土に置換え、連続壁を構築。 削機で掘削。  登換工法(地中連続壁工法)の概要  (シ提前箇所に流動化処理土を投入し、改良体を造成する工法  ①置換箇所を掘削  ②提前箇所に流動化処理土を打設流動化処理土を打設流動化処理土を打設な流動化処理土を打設な流動化処理土を打設な流動化処理土を打設						
で採用。  (地中連続壁工法)  (地中連続度工法)  (地中連述社社)  (地中連述社社)  (地中連述社社)  (地中連述社社)  (地中連述社)  (地						
置換工法 (地中連続壁工法)  (地中連続度工法)  (地中連						
(地中連続壁工法)  置換工法(地中連続壁工法)の概要  一次監部において、小型建機を用いて掘削した後、流動化処理土を投入し、改良体を造成する工法  ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
(地中連続壁 工法) 置換工法(地中連続壁工法)の概要 狭隘部において、小型建機を用いて掘削した後、流動化処理土を投入し、 改良体を造成する工法 ①置換箇所を掘削  ②掘削箇所に 流動化処理土を打設 流動化処理土を打設	置換工法					
狭隘部において、小型建機を用いて掘削した後、流動化処理土を投入し、改良体を造成する工法  ①置換箇所を掘削  ②掘削箇所に流動化処理土を打設 流動化処理土を打設		関機で掘削。 安定液 流動化処理 連続 壁				
改良体を造成する工法 ①置換箇所を掘削 ②掘削箇所に流動化処理土を打設 流動化処理土 (開削工法)						
①置換箇所を掘削 ②掘削箇所に流動化処理土を打設 流動化処理土を打設 流動化処理土						
置換工法 (開削工法)		改良体を造成する工法				
置換工法 (開削工法)		①置換箇所を掘削 ②掘削箇所に 流動化処理土を打設				
(開削工法)		流動化処理土				
		置換工法(開削工法)の概要				

表 1-4 施工方法の概要(2/3)

工法	概要
	原地盤に撹拌翼を貫入した後、地盤とセメントミルクを撹拌混合すること
	で改良体を造成する工法。地上構造物及び埋設構造物がなく、貫入が可能な
	箇所にて採用。
機械撹拌工法	①改良箇所に撹拌 愛を引き上げながら地盤とセメントミルクを撹拌し、改良体を造成 引上げ 改良体
	機械攪拌工法の概要
	高圧でセメントミルクを吐出し、原地盤を切削・撹拌することで改良体を
	造成する工法。地上構造物及び埋設構造物がある、開削が困難な箇所にて採
	用。
	所定深度まで削孔 ロッド建込み、超高圧 モニターの引き上げ、
古口牵针松小	ターの回転
高圧噴射撹拌 工法	
144	
	高圧噴射攪拌工法の概要
	原地盤を開削し、無筋コンクリートを投入することで、改良体を造成する
	工法。地上構造物及び埋設構造物がなく、開削が可能な箇所にて採用。
	②掘削箇所に
	リ 直換固所を掘削 コンクリートを打設
無筋	コンクリート
コンクリート	取水路 取水路
	無筋コンクリートの概要

表 1-4 施工方法の概要(3/3)

工法	概要
	構造物側方の狭隘な掘削範囲を施工性向上のために流動化処理土で埋戻
	情
土質安定処理土	①土留内部を掘削 土質安定 処理土
	土質安定処理土の概要
改良盛土	セメント改良土を所定の高さまで盛立てる工法。自主対策設備として設置した防潮堤の堤体として採用。(構造物に対して機能を期待しない地盤改良体)
	改良盛土の概要

#### 2. 各施設における地盤改良体の概要

建物・構築物及び土木構造物において、地盤改良体を設置する施設の平面配置図を図 2-1 に、間接支持する設備(C クラスを除く)の有無、既設地盤改良体と新設地盤改良体の区分、地盤改良工法及び地盤改良の目的を表 2-1 に示す。

表 2-1 に示すとおり、地盤改良の主な目的は、変形抑制及び浮上り防止(構造物底面に作用する揚圧力の遮断及び構造物側面のせん断抵抗確保)に区別される。その他に、構造物側方の狭隘な掘削範囲を施工性向上のために地盤改良体で埋戻す場合や自主対策設備として設置した防潮堤の堤体として地盤改良体を用いる場合がある。なお、柏崎刈羽原子力発電所7号機の工事計画認可申請においては、構造物の支持を目的とした地盤改良体は無い。

各施設の地盤改良体の配置図を「2.1 建物・構築物」及び「2.2 土木構造物」に示す。

なお、地盤改良体については、2018年12月時点で竣工済みのものを「既設地盤改良体」,施工中もしくは計画中のものを「新設地盤改良体」と称する。

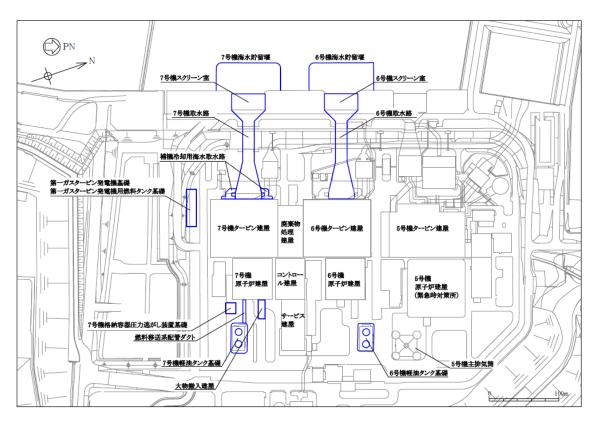
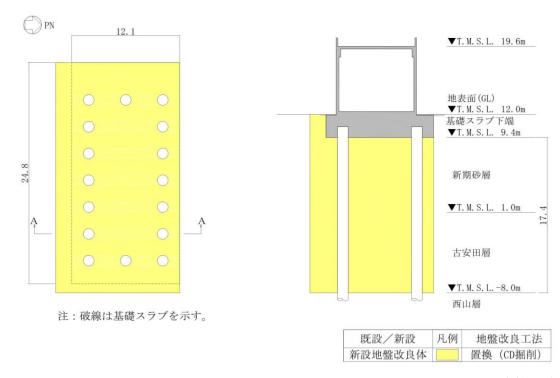



図 2-1 地盤改良体を設置する施設の平面配置図

表 2-1 地盤改良体の概要


大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像入建屋   大物像为花法 (CD 烟削工法)   変形抑制   医熱工法 (CD 烟削工法)   変形抑制   医熱工法 (国削工法)   変形抑制   医素工法 (国削工法)   変形抑制   医素工法 (国削工法)   変形抑制   医水口吸引提针工法   深上り防止   医热工法 (地中連标壁工法)   深上り防止   医热工法 (地中連标壁工法)   深上り防止   医治力之 (CD 烟削工法)   高圧噴射搅拌工法   深上り防止   医治力之 (CD 烟削工法)   高圧噴射搅拌工法   深上的防止   医热工法 (CD 烟削工法)   高圧噴射搅拌工法   深上的防止   医热工法 (CD 烟削工法)   高圧噴射搅拌工法   変形抑制   高圧噴射搅拌工法   深上的防止   医热工法 (地中連硫壁工法)   深度   海底上的防止   医素工法 (地中連硫壁工法)   深度   海底上的   深度   海底上的   深度   海底上的   深度   深度   深度   深度   深度   深度   深度   深		<u> </u>	間接支持		地盤改良		
##		対象施設	する設備*	既設/新設	工法	目的	
<ul> <li>物・構築</li> <li>基礎</li> <li>本水貯留堰</li> <li>本水貯留堰</li> <li>大田噴射提件工法</li> <li>海水貯留堰</li> <li>大田噴射提件工法</li> <li>海に噴射提件工法</li> <li>海に噴射指件工法</li> <li>海に噴射指性工法</li> <li>海に噴射指性工法</li> <li>海に噴射指性工法</li> <li>海に噴射工法</li> <li>海に噴射指性工法</li> <li>海に噴射指性工法</li> <li>海に噴射工法</li> <li>海に噴射型</li> <li>海に噴射工法</li> <li>海に噴射工法</li> <li>海に噴射工法</li> <li>海に噴射型</li> <li>海に噴射工法</li> <li>海に噴射型</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li> <li>海に噴射</li></ul>	建	大物搬入建屋	×	新設	置換工法 (CD 掘削工法)	変形抑制	
選換工法 (開削工法) 変形抑制	物				置換工法 (CD 掘削工法)		
海水貯留堰			0	新設	置換工法(開削工法)	変形抑制	
海水貯留堰         ×         新設         高圧噴射撹拌工法         変形抑制           スクリーン室         ×         新設         高圧噴射撹拌工法         浮上り防止           腹水路         ×         新設         高圧噴射撹拌工法         浮上り防止           糖機冷却用海水取水路         ×         新設         高圧噴射搅拌工法         浮上り防止           軽油タンク基礎          一         選換工法(CD 掘削工法) 高圧噴射搅拌工法 高圧噴射搅拌工法         変形抑制           燃料移送系配管ダクト         新設         高圧噴射搅拌工法         変形抑制           施工噴射搅拌工法         変形抑制         高圧噴射搅拌工法         変形抑制           6号機高水貯留堰         ×         新設         高圧噴射搅拌工法         浮上り防止           6号機スクリーン室         ×         新設         高圧噴射搅拌工法         浮上り防止           6号機取水路         ×         新設         高圧噴射搅拌工法         浮上り防止           電換工法(CD 堀削工法) 高圧噴射搅拌工法         浮上り防止         運換工法(CD 堀削工法) 高圧噴射搅拌工法         浮上り防止           無筋コンクリート         医療工法(D 堀削工法) 高圧噴射搅拌工法         深水抑制         海に噴射搅拌工法         変形抑制           6号機取水路         ○         一         上         変形抑制         変形抑制         上         変形力制	築	<b>基礎</b>			高圧噴射撹拌工法		
ボースクリーン室		Ve indicate		既設	高圧噴射撹拌工法	atc 117 4 6 14 1	
<ul> <li>取水路</li> <li>※ 新設</li> <li>機械搅拌工法</li> <li>高圧噴射搅拌工法</li> <li>無筋コンクリート</li> <li>高圧噴射搅拌工法</li> <li>運換工法 (CD 掘削工法)</li> <li>高圧噴射搅拌工法</li> <li>変形抑制</li> <li>整加タンク基礎</li> <li>整加タンク基礎</li> <li>一度設置</li> <li>一度対搅拌工法</li> <li>一度分析搅拌工法</li> <li>一度分析搅拌工法</li> <li>一度分析搅拌工法</li> <li>一度分析搅拌工法</li> <li>一度分析搅拌工法</li> <li>高圧噴射搅拌工法</li> <li>変形抑制</li> <li>高圧噴射搅拌工法</li> <li>変形抑制</li> <li>第0</li> <li>一方に噴射搅拌工法</li> <li>高圧噴射搅拌工法</li> <li>素に噴射搅拌工法</li> <li>素に使射搅拌工法</li> <li>素に噴射搅拌工法</li> <li>素に噴射搅拌工法</li> <li>素に噴射減拌工法</li> <li>素に噴射減拌工法</li> <li>素に減算・</li> <li>素に対する</li> <li>素に対する</li> <li>素に対する</li> <li>まに対する</li> <li>まに対する</li></ul>		一 海水	×	新設	高圧噴射撹拌工法	変形抑制	
取水路   X   新設   機械撹拌工法   浮上り防止		スクリーン室	×	新設	高圧噴射撹拌工法	浮上り防止	
東水路         ×         新設         高圧噴射撹拌工法         浮上り防止           補機冷却用海水取水路         ×         新設         高圧噴射搅拌工法         浮上り防止           軽油タンク基礎          一         一         一         一         一         一         字上り防止         要形抑制           変形抑制                要形抑制               要形抑制            変形抑制              変形抑制              変形抑制 </td <td></td> <td></td> <td></td> <td></td> <td>置換工法(地中連続壁工法)</td> <td></td>					置換工法(地中連続壁工法)		
高圧噴射境拌工法   無筋 = ンクリート   一		F1 4 17/2		±r⇒n.	機械撹拌工法	<b></b>	
福機冷却用海水取水路   ×   新設   高圧噴射撹拌工法   浮上り防止   一		以水路	X	<b>新設</b>	高圧噴射撹拌工法	浄上り防止	
野田					無筋コンクリート		
軽油タンク基礎     一次     高圧噴射撹拌工法     変形抑制       土木 構造 物     燃料移送系配管ダクト		補機冷却用海水取水路	×	新設	高圧噴射撹拌工法	浮上り防止	
軽油タンク基礎		軽油タンク基礎	0	пт≞л	置換工法 (CD 掘削工法)		
### ### ### ### ### ### ### ### ### ##				<b></b>	高圧噴射撹拌工法	亦形物制	
大木				新設	置換工法 (CD 掘削工法)	変形抑制	
土木構造物       燃料移送系配管ダクト        新設 置換工法 (CD 掘削工法) 高圧噴射撹拌工法       変形抑制 変形抑制 変形抑制 変形抑制 変形抑制 変形抑制 変形抑制 変形抑制					高圧噴射撹拌工法		
土株構造物         高圧噴射撹拌工法         変形抑制           6号機海水貯留堰         ×         新設 高圧噴射撹拌工法         変形抑制           6号機スクリーン室         ×         新設 高圧噴射撹拌工法         浮上り防止           6号機取水路         ×         新設 置換工法(地中連続壁工法)機械搅拌工法         浮上り防止           6号機軽油タンク基礎          既設 置換工法(CD 掘削工法) 高圧噴射撹拌工法         変形抑制           6号機軽油タンク基礎         新設 高圧噴射撹拌工法         変形抑制           第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機         既設 施工性向上 改良盛土         防潮堤(自主設 備) 堤体		燃料移送系配管ダクト	0	既設	高圧噴射撹拌工法		
RE				新設	置換工法 (CD 掘削工法)	変形抑制	
6 号機スクリーン室     ×     新設     高圧噴射撹拌工法     浮上り防止       6 号機取水路     ×     新設     選換工法(地中連続壁工法)機械撹拌工法       高圧噴射撹拌工法     無筋コンクリート     選換工法(CD 掘削工法)高圧噴射撹拌工法       高圧噴射撹拌工法     変形抑制       新設     置換工法(開削工法)高圧噴射撹拌工法       高圧噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン機械型性     既設     機械撹拌工法     変形抑制       基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン機能用燃料タンク基礎     既設     機能型性上     施工性向上       改良盛土     防潮堤(自主設備)堤体	土木				高圧噴射撹拌工法		
6 号機スクリーン室     ×     新設     高圧噴射撹拌工法     浮上り防止       6 号機取水路     ×     新設     選換工法(地中連続壁工法)機械撹拌工法       高圧噴射撹拌工法     無筋コンクリート     選換工法(CD 掘削工法)高圧噴射撹拌工法       高圧噴射撹拌工法     変形抑制       新設     置換工法(開削工法)高圧噴射撹拌工法       高圧噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン機械型性     既設     機械撹拌工法     変形抑制       基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン機能用燃料タンク基礎     既設     機能型性上     施工性向上       改良盛土     防潮堤(自主設備)堤体	構造		×	既設	高圧噴射撹拌工法	亦形物制	
6 号機取水路     ※     新設     置換工法 (地中連続壁工法) 機械撹拌工法	物	0 万城(两/八川) 田 堰		新設	高圧噴射撹拌工法	<b>交</b> ///抑制	
6 号機取水路     ×     新設     機械撹拌工法 高圧噴射撹拌工法 無筋コンクリート     浮上り防止       6 号機軽油タンク基礎     匹設     置換工法 (CD 掘削工法) 高圧噴射撹拌工法 新設     変形抑制       第一ガスタービン発電機 基礎,第一ガスタービン 発電機用燃料タンク基礎     機械撹拌工法 変形抑制     変形抑制       集職用燃料タンク基礎     匹設     機械撹拌工法 世質安定処理土     施工性向上       改良盛土     防潮堤(自主設備) 堤体		6号機スクリーン室 ×		新設	高圧噴射撹拌工法	浮上り防止	
6号機取水路     ×     新設     高圧噴射撹拌工法     浮上り防止       6号機軽油タンク基礎     既設     置換工法 (CD 掘削工法) 高圧噴射撹拌工法     変形抑制       新設     置換工法 (開削工法) 高圧噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎     既設     機械撹拌工法 支良盛土     変形抑制       財務場 (自主設備) 堤体				±ι⊒π	置換工法(地中連続壁工法)		
高圧噴射撹拌工法   無筋コンクリート   置換工法 (CD 堀削工法)   高圧噴射撹拌工法   変形抑制   電換工法 (開削工法)   高圧噴射撹拌工法   変形抑制   電換工法 (開削工法)   高圧噴射撹拌工法   変形抑制   接破撹拌工法   変形抑制   土質安定処理土   施工性向上   防潮堤(自主設   位) 堤体   横板   堤体   横板   地本   地本   地本   地本   地本   地本   地本   地		C 日 粉 時 小 四			機械撹拌工法	※ トルは は	
医設     置換工法 (CD 掘削工法)       高 医噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎     医療機用燃料タンク基礎     医液 置換工法 (D 掘削工法)       医療 と であり です。		0 万1成48/八四	^	AYLEX	高圧噴射撹拌工法	サエッ例エ	
6 号機軽油タンク基礎     の     関数     高圧噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎     販設     機械撹拌工法     変形抑制       集職機用燃料タンク基礎     大電機用燃料タンク基礎     大電機用燃料タンク基礎     大電機用燃料タンク基礎     大電機用燃料タンク基礎					無筋コンクリート		
6 号機軽油タンク基礎     高圧噴射撹拌工法     変形抑制       新設     置換工法 (開削工法)       高圧噴射撹拌工法     変形抑制       第一ガスタービン発電機基礎,第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎     既設     大質安定処理土     施工性向上       改良盛土     防潮堤 (自主設備) 堤体				旺益	置換工法 (CD 掘削工法)		
新設     置換工法 (開削工法)       高圧噴射撹拌工法     適圧噴射撹拌工法       機械撹拌工法     変形抑制       基礎,第一ガスタービン 発電機用燃料タンク基礎     匹設       大質安定処理土     施工性向上       改良盛土     備) 堤体		6 早機軽油タンカ基礎	$\circ$	处议	高圧噴射撹拌工法	亦形抑制	
第一ガスタービン発電機     機械撹拌工法       基礎,第一ガスタービン発電機     大質安定処理土       基礎,第一ガスタービン発電機     大質安定処理土       放良盛土     防潮堤(自主設備)堤体		0 万成牲血グング 巫姫	O	☆に⇒几	置換工法 (開削工法)	<b>多</b> ////	
第一ガスタービン発電機 基礎,第一ガスタービン 発電機用燃料タンク基礎				材取	高圧噴射撹拌工法		
基礎,第一ガスタービン       ○       既設       防潮堤(自主設 改良盛土         発電機用燃料タンク基礎       備)堤体					機械撹拌工法	変形抑制	
基礎,第一ガスタービン       ○       改良盛土       防潮堤(自主設 備) 堤体         発電機用燃料タンク基礎       備)堤体		第一ガスタービン発電機		旺益	土質安定処理土	施工性向上	
発電機用燃料タンク基礎 備)堤体 備)堤体		基礎,第一ガスタービン	0	以记忆		防潮堤(自主設	
June 37. IAA I N IN IAA N I		発電機用燃料タンク基礎			以尺盆上	備)堤体	
				新設	機械撹拌工法	変形抑制	

注記* :間接支持する設備 (Cクラスを除く) の有無:有り (○), 無し (×)

## 2.1 建物·構築物

## (1) 大物搬入建屋

大物搬入建屋の地盤改良体の配置図を図 2-2 に示す。



(単位:m)

(a) 平面図

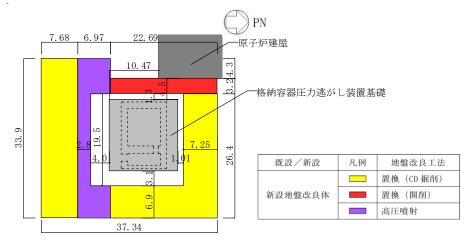
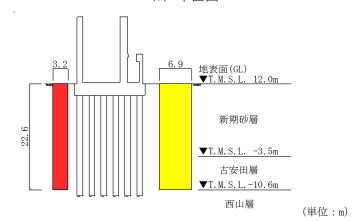
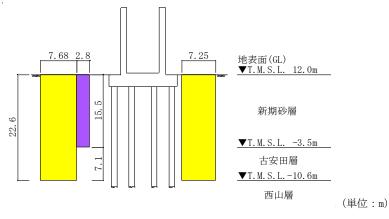

(b) A-A断面図

図 2-2 地盤改良体の配置図(大物搬入建屋)

(参考) 6-9 241


## (2) 格納容器圧力逃がし装置基礎

格納容器圧力逃がし装置基礎の地盤改良体の配置図を図 2-3 に示す。




(単位:m)

## (a) 平面図



## (b) A-A断面図



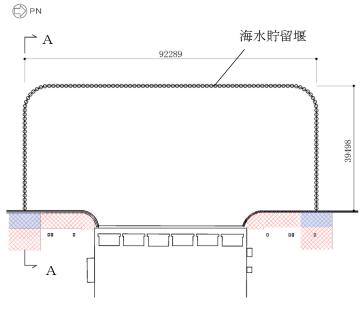
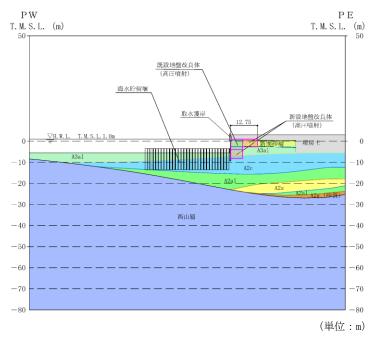

(c) B-B断面図

図 2-3 地盤改良体の配置図(格納容器圧力逃がし装置基礎)


## 2.2 土木構造物

## (1) 海水貯留堰

海水貯留堰の地盤改良体の配置図を図 2-4 に、6 号機海水貯留堰の地盤改良体の配置図を図 2-5 に示す。



(a) 平面図



(b) A-A断面図

既設/新設	凡例	地盤改良工法
既設地盤改良体		高圧噴射
新設地盤改良体		高圧噴射

図 2-4 地盤改良体の配置図 (海水貯留堰)

(参考) 6-11 243

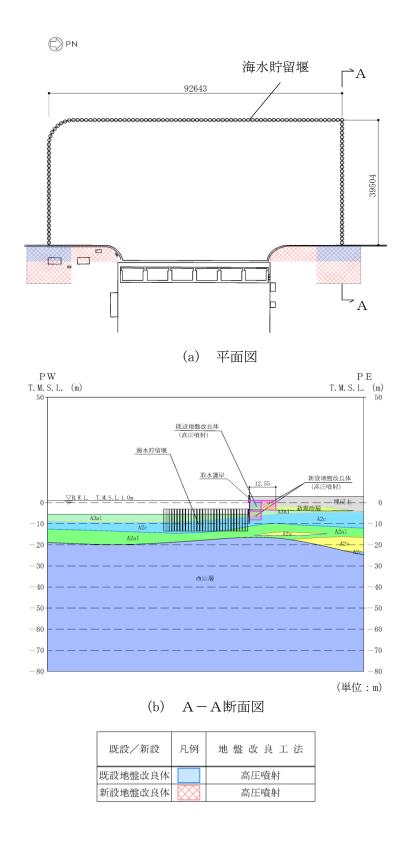
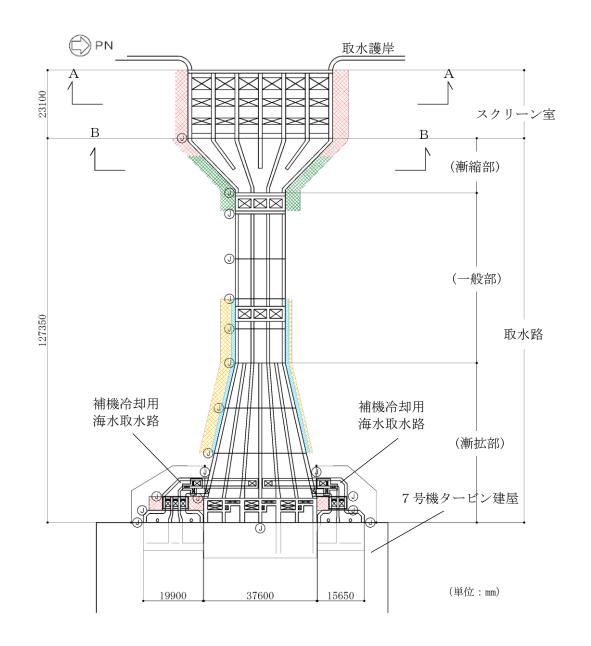



図 2-5 地盤改良体の配置図 (6号機海水貯留堰)


(参考) 6-12 244

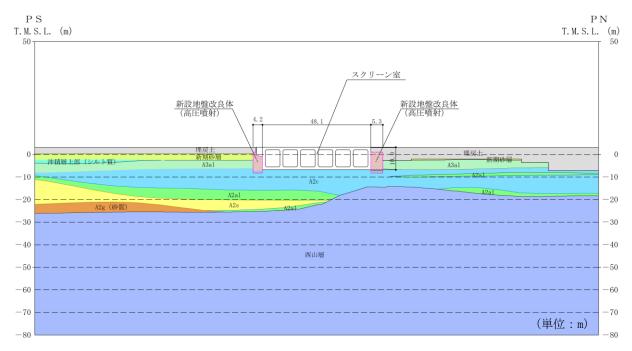
#### (2) スクリーン室、取水路及び補機冷却用海水取水路

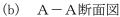
スクリーン室,取水路及び補機冷却用海水取水路の地盤改良体の配置図を図 2-6 に,6 号機スクリーン室及び 6 号機取水路の地盤改良体の配置図を図 2-7 に示す。

地盤改良体の幅は、浮上り防止を目的とし構造物を不透水層に根入れする観点から、構造物側方の埋戻土層の範囲(建設時における土留め内の掘削範囲)とすることを基本とする。ただし、建設時のオープン掘削により構造物側方に埋戻土層が広範囲に分布する場合は、地盤改良体高さの1/2以上を目安に地盤改良幅を設定する。

また、図 2-7 に示すとおり、6 号機取水路(一般部) 北側の一部には、取水電源建屋が設置されている。取水電源建屋の設置地盤のうち取水路側方の埋戻し範囲は、建設時に地盤改良材を用いた埋戻しが実施されているが、当工事計画認可では、建設時の地盤改良の効果は期待せず、当該部分を埋戻土として評価を行う。




(a) 平面図


既設/新設	凡例	地盤改良工法
	$\bowtie$	高圧噴射
新設地盤改良体		無筋コンクリート
利权地验以及许		置換(地中連続壁)
	$\bigotimes$	機械攪拌

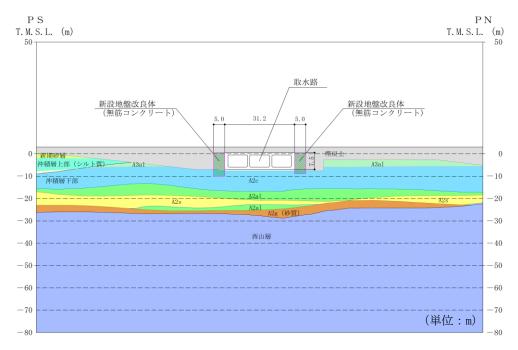

注 : 置換工法(地中連続壁),機械攪拌工法の施工範囲の内,地上構造物及び埋設構造物がある箇所では,高圧噴射を適用

図 2-6 地盤改良体の配置図 (スクリーン室,取水路,補機冷却用海水取水路) (1/2)

(参考) 6-14 246







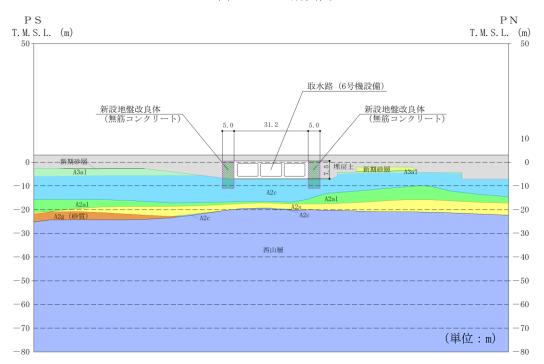
(c) B-B断面図

既設/新設	凡例	地盤改良工法
	$\bigotimes$	高圧噴射
新設地盤改良体		無筋コンクリート
利权地验以及件		置換(地中連続壁)
		機械攪拌

図 2-6 地盤改良体の配置図 (スクリーン室,取水路) (2/2)

(参考) 6-15




既設/新設	凡例	地盤改良工法
新設地盤改良体	$\bigotimes$	高圧噴射
		無筋コンクリート
		置換(地中連続壁)
		機械攪拌

注:置換工法(地中連続壁),機械攪拌工法の施工範囲の内,地上構造物及び埋設構造物がある箇所では,高圧噴射または置換(開削)を適用

図 2-7 地盤改良体の配置図 (6号機スクリーン室,6号機取水路) (1/2)



(b) A-A断面図



(c) B-B断面図

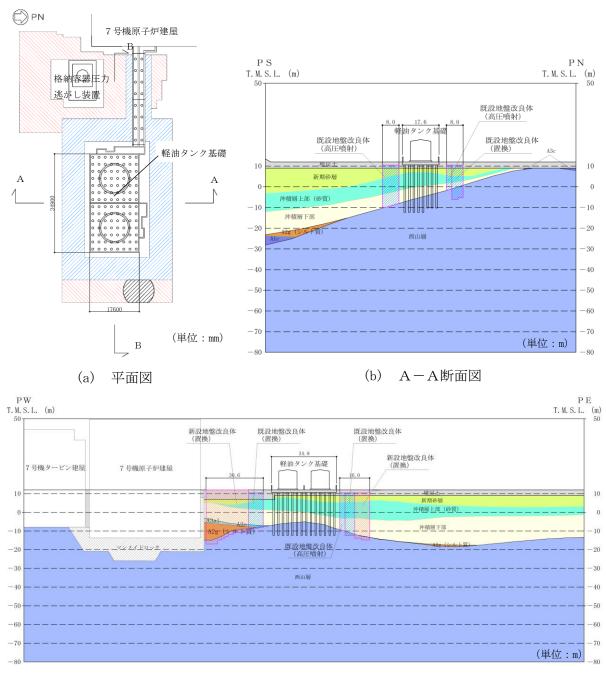

既設/新設	凡例	地盤改良工法
新設地盤改良体	$\bigotimes$	高圧噴射
		無筋コンクリート
		置換(地中連続壁)
		機械攪拌

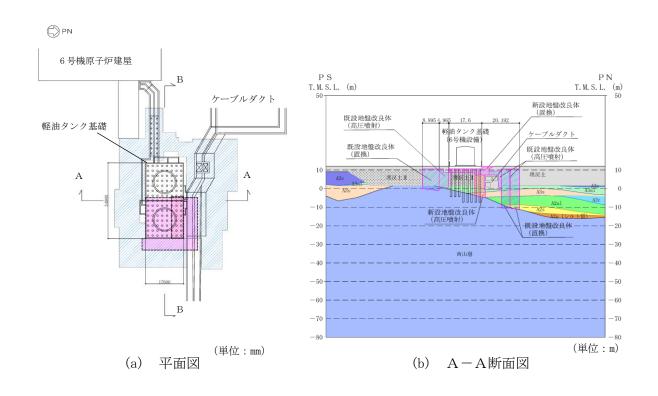
図 2-7 地盤改良体の配置図 (6号機スクリーン室,6号機取水路) (2/2)

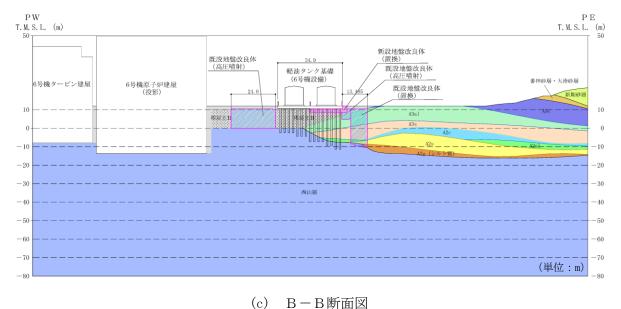
(参考) 6-17 249

#### (3) 軽油タンク基礎

軽油タンク基礎の地盤改良体の配置図を図 2-8 に,6 号機軽油タンク基礎の地盤改良体の配置図を図 2-9 に示す。




(c) B-B断面図


既設/新設	凡例	地盤改良工法
既設地盤改良体		置換(CD掘削)
新設地盤改良体		置換(CD掘削)

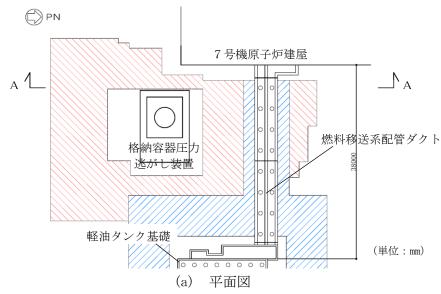
注:置換工法(CD 掘削)の施工範囲の内,上構造物及び埋設構造物がある箇所では,高圧噴射または置換(開削)を適用

250

図 2-8 地盤改良体の配置図 (軽油タンク基礎)






既設/新設	凡例	地盤改良工法
既設地盤改良体		置換(CD掘削)
新設地盤改良体		置換(開削)
		高圧噴射

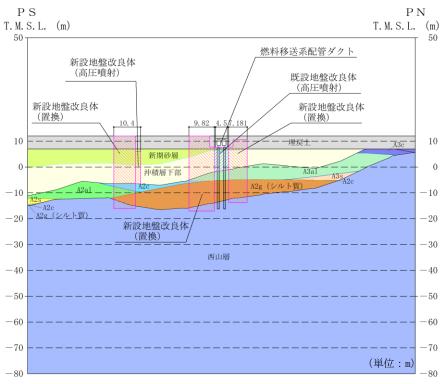

注 : 置換工法(CD 掘削)の施工範囲の内, 地上構造物及び埋設構造物がある箇所では, 高圧噴射を適用

図 2-9 地盤改良体の配置図 (6号機軽油タンク基礎)

(参考) 6-19 251

# (4) 燃料移送系配管ダクト 燃料移送系配管ダクトの地盤改良体の配置図を図 2-10 に示す。





既設/新設	凡例	地盤改良工法
既設地盤改良体		置換(CD掘削)
新設地盤改良体		置換(CD掘削)

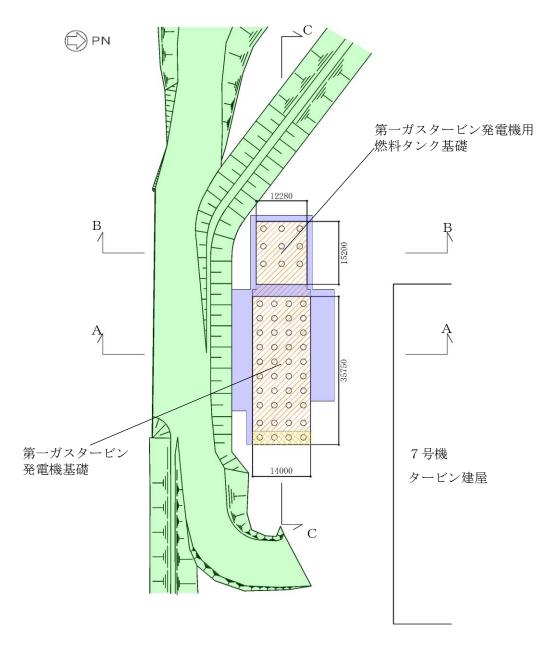

注 : 置換工法(CD 掘削)の施工範囲の内, 地上構造物及び埋設構造物がある箇所では, 高圧噴射または置換(開削)を適用

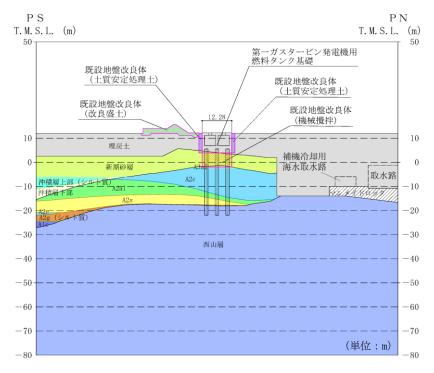
図 2-10 地盤改良体の配置図 (燃料移送系配管ダクト)

(b) A-A断面図

(参考) 6-20 252

(5) 第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎 第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎の地盤改良 体の配置図を図 2-11 に示す。




(単位:mm)

(a) 平面図

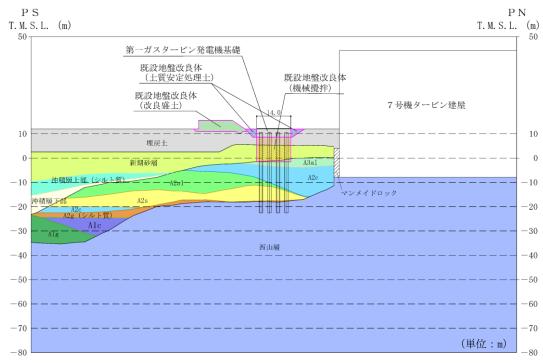

既設/新設	凡例	地盤改良工法					
		機械攪拌					
新設地盤改良体		土質安定処理土					
		改良盛土					
新設地盤改良体		機械攪拌					

図 2-11 地盤改良体の配置図(1/3)

(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)



(b) A-A断面図



(c) B-B断面図

既設/新設	凡例	地盤改良工法					
		機械攪拌					
新設地盤改良体		土質安定処理土					
		改良盛土					
新設地盤改良体		機械攪拌					

図 2-11 地盤改良体の配置図 (2/3)

(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)

(参考) 6-22

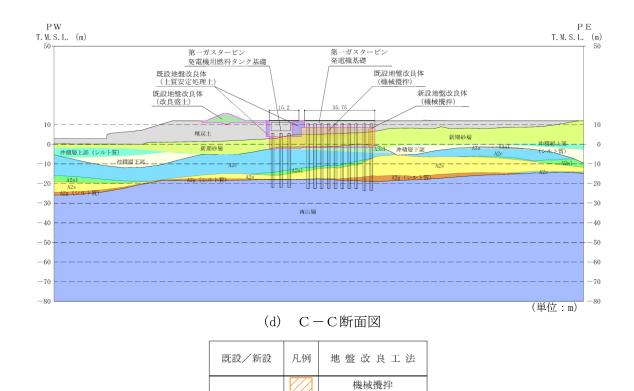
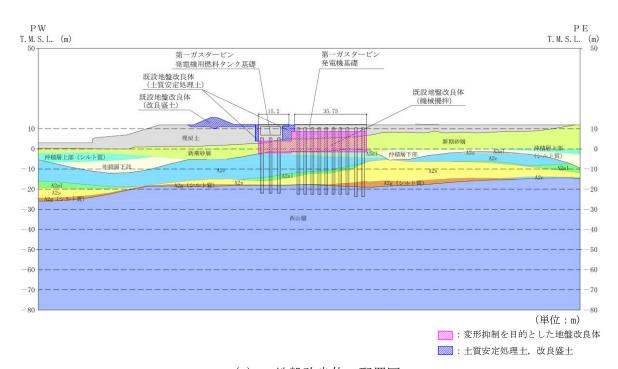



図 2-11 地盤改良体の配置図 (3/3)

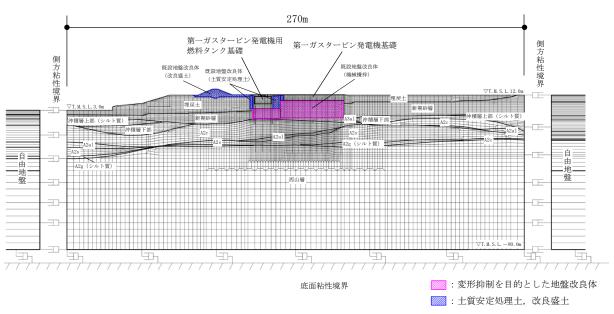
新設地盤改良体

新設地盤改良体

土質安定処理土


改良盛土

機械攪拌


(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)

### 3. 地盤改良体のモデル化

地震応答解析において考慮する地盤改良体は、評価対象施設の周辺に存在する地盤改良体とする。また、構造物側方の狭隘な掘削範囲を施工性向上のために地盤改良体で埋戻す用途の土質安定処理土や自主対策設備として設置した防潮堤の改良盛土についても、影響評価の観点からモデル化する。地盤改良体のモデル化の一例を図 3-1 に示す。



# (a) 地盤改良体の配置図



(b) 地震応答解析モデル

図 3-1 地盤改良体のモデル化の一例

(例:第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)

256

### 4. 解析用物性値の設定

### 4.1 基本方針

既設地盤改良体の解析用物性値については,原位置試験及び室内試験結果に基づき設定する。 地盤改良体の物理的及び力学的特性は,日本工業規格(JIS)又は地盤工学会(JGS)に基づいた試験結果から設定する。

新設地盤改良体の解析用物性値については、設計値に基づき設定することを基本とする。

### 4.2 既設地盤改良体

### 4.2.1 解析用物性値の設定方針

- (1) セメント改良(置換工法,機械撹拌工法,高圧噴射撹拌工法,改良盛土)
  - a. 密度 ρ 及び間隙率 n

既設地盤改良体 (セメント改良) の密度 ρ と間隙率 n は,室内試験結果から設定する。 海水貯留堰の高圧噴射攪拌工法及び常設代替交流電源装置基礎 (第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎) の機械撹拌工法の間隙率 n は,高圧噴射 (砂質土) における物理特性の実績値に基づき設定する。また,改良盛土の間隙率 n は,置換工法と同様に,セメントと土を陸上混練する工法であることから,類似工法である置換工法の実績値に基づき設定する。

#### b. 動せん断弾性係数Gma

既設地盤改良体(セメント改良)の動せん断弾性係数 $G_m$ は、密度 $\rho$ 、S波速度 $V_s$ より、(式 1)に基づき初期せん断弾性係数 $G_0$ を設定する。

$$G_0 = \rho \cdot V_s^2 \tag{\textsterling 1}$$

### c. 減衰定数の上限値 h max

有効応力解析においては、動的変形特性として減衰定数の上限値  $h_{max}$  の設定が必要となる。  $h_{max}$  の設定方法の概念図を図 4-1 に示す。減衰定数の上限値  $h_{max}$  については、地盤改良体の動的変形試験に基づく減衰定数 h とせん断ひずみ  $\gamma$  の回帰曲線における減衰定数の上限値から設定する。

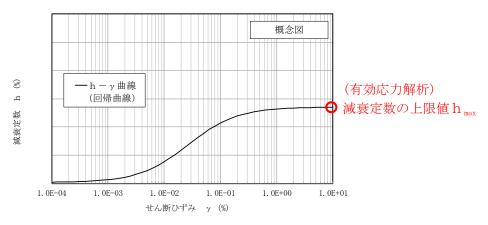
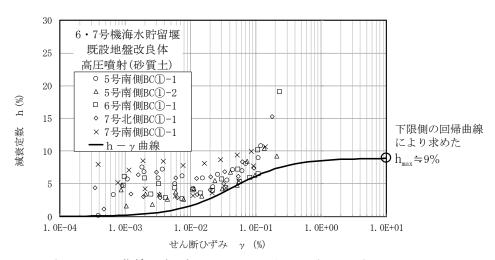



図 4-1 減衰定数の上限値 h max の設定方法の概念図


(参考) 6-25

257

ただし、 $6\cdot7$  号機海水貯留堰については、他の地盤改良体と比較し試験結果のばらつきが大きいことから、試験結果のばらつきを踏まえ、動的変形試験に基づく減衰定数 h とせん断ひずみ $\gamma$ の下限相当の回帰曲線から求める減衰定数の上限値 h max と文献(建築物のための改良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工法、日本建築センター、平成 14 年 11 月)に示される h max を比較して保守的に小さい方の値を設定する。

6・7 号機海水貯留堰の動的変形試験結果を図 4-2 に示す。試験結果の下限側の回帰曲線から推定される  $h_{max}$  は約 9%である。また,文献では,「減衰定数は  $1\times10^{-3}$  の軸ひずみにおいてほぼ 5%~10%である」ことが示されており,文献に示される軸ひずみの最大値付近となる  $1\times10^{-3}$  よりも大きな領域において,減衰定数は 5%以上を示すものと判断できる(図 4-3 参照)ことから,文献に基づき  $h_{max}$  は 5%と設定する。

上記より、 $6\cdot7$  号機海水貯留堰の $h_{max}$ は、動的変形試験に基づく減衰定数hとせん断ひずみ $\gamma$ の下限相当の回帰曲線から求める減衰定数の上限値 $h_{max}$ と文献に基づく $h_{max}$ を比較し、保守的に小さい値である文献の『5%』を設定する。



注:図中の $h-\gamma$ 曲線は各プロットの下限側の回帰を示す。

図 4-2 減衰定数のひずみ依存特性(海水貯留堰,6号機海水貯留堰・高圧噴射(砂質土))

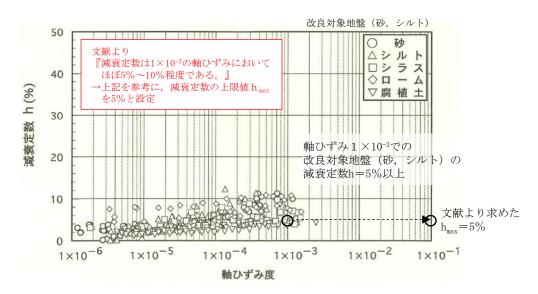



図 4-3 減衰定数のひずみ依存特性

(引用:建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法, 日本建築センター,平成14年11月に加筆)

# d. ポアソン比 ν

既設地盤改良体 (セメント改良) のポアソン比 $\nu$  については、PS 検層に基づき、式(2) より設定する。

$$v = \frac{1 - 2\left(V_s/V_p\right)^2}{2\left(1 - \left(V_s/V_p\right)^2\right)} \tag{£ 2}$$

ここで,

V_s : S 波速度 V_p : P 波速度

# e. 粘着力 c

既設地盤改良体(セメント改良)の粘着力 c については、一軸圧縮試験結果より設定する。文献(地盤工学用語辞典)より、一軸圧縮試験の結果より求まる非排水せん断強度を粘着力として設定する。粘着力を(式3)により設定する。

$$c = \frac{q_u}{2} \tag{\textsterling 3}$$

ここで,

c : 粘着力

q u :一軸圧縮強度

### (2) 土質安定処理土

既設地盤改良体(土質安定処理土)に分類する地盤改良体は、S 波速度や一軸圧縮強度に関しては設計値に基づき設定し、その他の解析用物性値は文献に基づき設定する。

### a. 密度ρ及び間隙率n

既設地盤改良体(土質安定処理土)の密度  $\rho$  と間隙率 n は,土質安定処理土は置換工法と同様に,セメントと土を陸上混練する工法であることから,類似工法である置換工法の室内試験結果から設定する。

### b. 動せん断弾性係数Gma

既設地盤改良体(土質安定処理土)の動せん断弾性係数 $G_{ma}$ は、地盤改良体の設計値(設計基準一軸圧縮強度  $q_{ud}$ )に基づき設定する。

具体的には、図 4-4 に示すように文献(第 2 版 流動化処理土利用技術マニュアル、独立行政法人土木研究所、平成 19 年)の一軸圧縮強度  $q_u$  と変形係数 $E_{50}$  の関係から、 $E_{50}$  を推定し、(式 4)に基づき初期せん断弾性係数 $G_0$  を設定する。

$$G_0 = \frac{E_{50}}{2(1+v)} \tag{\textsterling 4}$$

ここで,

ν:ポアソン比

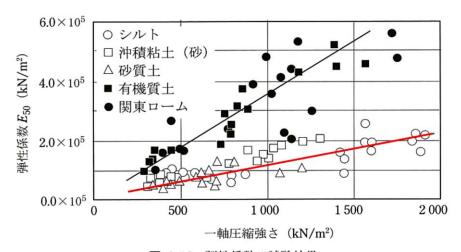



図-2.12 弾性係数の試験結果

図 4-4 流動化処理土の変形係数の推定

(引用:第2版 流動化処理土利用技術マニュアル,独立行政法人土木研究所,平成19年に加筆)

- 変形係数 E₅₀ の関係から初期せん断弾性係数 G₀ を設定することの妥当性 一軸圧縮強度 g から初期せん断弾性係数 G₀ を設定する方法としては、以下に示す:
  - 一軸圧縮強度  $q_u$  から初期せん断弾性係数 $G_0$  を設定する方法としては、以下に示す 2 通りの方法が挙げられる。
    - (1) 文献の設計基準一軸圧縮強度  $q_{ud}$  と変形係数 $E_{50}$  の関係から推定した $E_{50}$  より、(式 5) に示す変形係数E とせん断弾性係数Gの関係から、 $G_{0}$  を推定する方法。

$$G = \frac{E}{2(1+v)} \tag{\textsterling 5}$$

- (2) 密度 $\rho$ , S波速度 $V_s$ より,  $G = \rho \cdot V_s^2$ の関係から $G_0$ を算定する方法 ここで, 土質安定処理土のS波速度 $V_s$ は, 図 4-5 に示す文献(建築物のための改 良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工 法, 日本建築センター, 平成 14 年 11 月)のS波速度 $V_s$ 0 関係に基づき推定する。
- (1)と(2)により選定した $G_0$ の比較結果を表 4-1に示す。
- (1) と(2) を比較した結果、(1) により算定した $G_0$  の方が(2) により算定した $G_0$  より小さく評価されることから、構造物評価の観点から(1) の方法により $G_0$  を設定する。

表 4-1 初期せん断弾性係数G₀の設定方法の比較

	設定方法	初期せん断弾性係数G。 (kN/m²)
(1)	設計基準一軸圧縮強度 q ud と変形係数 E 50 の関係から,E 50 を推定し設定	$9.58 \times 10^3$
(2)	密度 $\rho$ , 文献から推定される $S$ 波速度 $Vs$ より設定	$1.67 \times 10^{5}$

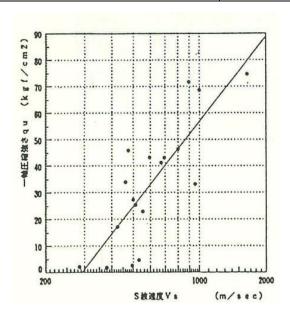



図 4-5 S波速度と qu の関係図

(引用:建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法, 日本建築センター,平成14年11月)

### c. ポアソン比 v

既設地盤改良体(土質安定処理土)のポアソン比 $\nu$ は、文献(第 2 版 流動化処理土利用技術マニュアル、独立行政法人 土木研究所 編、平成 19 年)を参考に 0.2 に設定する。

### d. 減衰定数の上限値 h max

有効応力解析においては、動的変形特性として減衰定数の上限値 h_{max}の設定が必要となる。既設地盤改良体(土質安定処理土)の減衰定数の上限値 h_{max}は、文献(建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法、日本建築センター、平成 14 年 11 月)を参考に設定する。

文献では、図 4-6 に示す結果に基づき、「減衰定数は  $1\times10^{-3}$  の軸ひずみにおいてほぼ  $5\%\sim10\%$ である」ことが示されており、文献に示される軸ひずみの最大値付近となる  $1\times10^{-3}$  よりも大きな領域において、減衰定数は 5%以上を示すものと判断できることから、文献に基づき  $h_{max}$  は 5%と設定する。

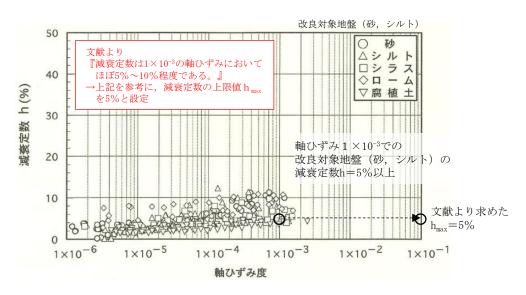



図 4-6 減衰定数のひずみ依存特性

(引用:建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法, 日本建築センター,平成14年11月に加筆)

### e. 粘着力 c

既設地盤改良体(土質安定処理土)の粘着力 c については、設計一軸圧縮強度より設定する。文献(地盤工学用語辞典)より、一軸圧縮強度より求まる非排水せん断強度を粘着力として設定する。粘着力を設計一軸圧縮強度  $q_{ud}$  に基づき、(式 6) より設定する。

$$c = \frac{q_{ud}}{2} \tag{\ddagger 6}$$

ここで,

c : 粘着力

qud:設計一軸圧縮強度

### 4.2.2 室内試験及び原位置試験

### (1) 既設地盤改良体の試験概要

### a. 試験方法

既設地盤改良体の原位置試験及び室内試験は、日本工業規格(JIS)又は地盤工学会(JGS)の試験規格に基づき実施する。既設地盤改良体の試験項目を表 4-2 に示す。

対象施設及び種別(地盤種別) 軽油タンク基礎, 燃料移送系 第一ガスタービン発電機基礎, 第一ガスタービン発電機用 6号機軽油タンク基礎 海水 項目 試験規格 試験名称 貯留堰 燃料タンク基礎 配管ダクト 高圧噴射 (砂質土) 土質安定 処理土 高圧噴射 (砂質土) 高圧噴射 (粘性土) 高圧噴射 機械攪拌 改良盛土 岩石の密度試験(ノギス法) 0 JGS 2132 0 湿潤密度 TIS A 1225 土の湿潤密度試験方法 間隙率 JIS A 1202 土粒子の密度試験方法 0 0 0  $\circ$ P波速度 IGS 1122 地盤の弾性波速度検層方法  $\bigcirc$  $\bigcirc$  $\bigcirc$ S波速度 JGS 1122 地盤の弾性波速度検層方法 0  $\circ$ 0  $\circ$ h~ γ 関係 IGS 0542 ための繰返し三軸試験方法 JIS A 1216 土の一軸圧縮試験方法  $\circ$  $\circ$ 圧縮強度 JGS 2521 岩石の一軸圧縮試験

表 4-2 既設地盤改良体の試験項目

### b. 適用基準

地盤改良体の適用工法,設置箇所及び構造物の支持機能の有無に応じて適切な諸基準・指針を適用する。地盤改良工法の基準・指針として一般的な文献を表 4-3 に,地盤改良の目的及び構造形式に係る分類と適用基準を表 4-4 に示す。

柏崎刈羽原子力発電所においては、構造物の支持を目的とした地盤改良体は無いことから、「陸上工事マニュアル」又は「港湾・空港マニュアル」の何れかの基準・指針に従うものとする。

基準・指針名	基準略称
陸上工事における深層混合処理工法設計・施工マニュアル 改訂版, (財)土木研究センター,平成16年3月	陸上工事マニュアル
港湾・空港における深層混合処理工法技術マニュアル, (財)沿岸技術研究センター,平成26年10月	港湾・空港マニュアル
建築基礎構造設計指針, 日本建築学会,2001年改定	建築基礎指針
建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を 用いた深層・浅層混合処理工法,日本建築センター,平成14年5月	建築センター指針
乾式キャスク貯蔵建屋基礎構造の設計に関する技術指針, 日本電気協会,平成21年	JEAG4616

表 4-3 地盤改良工法の基準・指針

注:「○」は実施した試験,「-」は実施していない試験を示す。

表 4-4 地盤改良の目的及び構造形式に係る分類と適用基準 (1/2)

目的	直接支持	変形抑制
構造形式	構造物 	構造物 地盤 改良 非液状化層 支持層
対象施設	無し	第一ガスタービン発電機基礎, 第一ガスタービン発電機用燃料タンク基礎, 燃料移送系配管ダクト
適用 基準	建築基礎指針, 建築センター指針, JEAG4616	陸上工事マニュアル

表 4-4 地盤改良の目的及び構造形式に係る分類と適用基準 (2/2)

目的	変形抑制	変形抑制
構造形式	液 地	護岸(鋼矢板) 地盤改良 液状化層 非液状化層  貯留堰(鋼管矢板)
対象施設	軽油タンク基礎,燃料移送系配管ダクト 6号機軽油タンク基礎	海水貯留堰,6 号機海水貯留堰
適用基準	陸上工事マニュアル	港湾・空港マニュアル

### c. 試験頻度

諸基準・指針における調査箇所数の目安を表 4-5 に示す。既設地盤改良体の施工数量と文献による一軸圧縮試験の調査箇所数との比較を表 4-6 に示す。参考として、その他の物性値の設定に用いた試料数を表 4-7 に示す。既設地盤改良体の供試体採取位置及び PS 検層の実施位置を(2)に示す。

試験頻度は、表 4-5 に示すとおり、諸基準・指針(「陸上工事マニュアル」又は「港湾・空港マニュアル」)を参考に、一軸圧縮試験の調査箇所の目安に従い、地盤改良体を適用する工事状況に応じて設定する。

諸基準・指針に示される一軸圧縮試験の必要調査箇所数と既設地盤改良体における一軸圧縮試験の試料本数を比較した結果、文献による必要調査箇所数の目安を満足することを確認した。

表 4-5 諸基準・指針における必要調査箇所数の目安

基準略称	調査箇所数
陸上工事 マニュアル	設計強度毎に改良体500本未満は3本×3深度,500本以上は250本毎に1本追加。
港湾・空港 マニュアル	改良土量10,000m ³ に1本(上中下の3箇所)程度。

表 4-6 既設地盤改良体の施工数量と必要調査箇所数との比較

	対象施設		6・7号機 海水貯留堰		√ク基礎, 系配管ダクト		スタービン発電機 - ビン発電機用燃		6号機軽油タンク基礎			
	種別 (地盤種別)		高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	機械攪拌	改良盛土	土質安定 処理土	置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)	
適用基準			港湾・空港 マニュアル	陸上工事 マニュアル	陸上工事 マニュアル	陸上工事 マニュアル	港湾・空港 マニュアル	_	陸上工事 マニュアル	陸上工事 マニュアル	陸上工事 マニュアル	
施工	施工数量	(m ³ )	2790. 3	12450	10297.7	5995	147429	I	16374. 6	2428.2	5075.6	
数量	本数	(本)	58	95	102	237		1	204	38	134	
(A)	一軸圧縮試験本数	(本)	6	81	99	9	125	-	90	36	81	
(B)	必要本数	(本)	3	9	9	9	45	1	9	9	9	
判定	判定 (A) > (B)		0	0	0	0	0	_	0	0	0	

表 4-7 (参考) 各物性値の設定に用いた試料数

	対象施設	6・7号機 軽油タンク基礎, 海水貯留堰 燃料移送系配管ダクト			第一ガスタービン発電機基礎, 第一ガスタービン発電機用燃料タンク基礎			65	骨機軽油タンク基	対応する	
	種別 (地盤種別)	高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	機械攪拌	改良盛土	土質安定 処理土	置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)	試験項目
	湿潤密度	6	81	99	9	125	_	90	36	81	物理試験
	間隙率	_	24	28	-	-	-	24	20	20	物理試験
試料	P波速度	25	180	211	37	26	-	167	33	78	PS検層
数	S波速度	25	180	211	37	26	-	167	33	78	PS検層
	h ~ γ 関係	10	20	24	9	8	-	20	16	16	動的変形試験
	一軸圧縮強度	6	81	99	9	125	_	90	36	81	一軸圧縮試験

注記*1:"-"は試験を実施していない項目を示す。

^{*2:}PS検層は区間1mを集計単位とした場合の試料数を示す。

- (2) 試料採取位置及び試験結果
  - a. 海水貯留堰, 6号機海水貯留堰

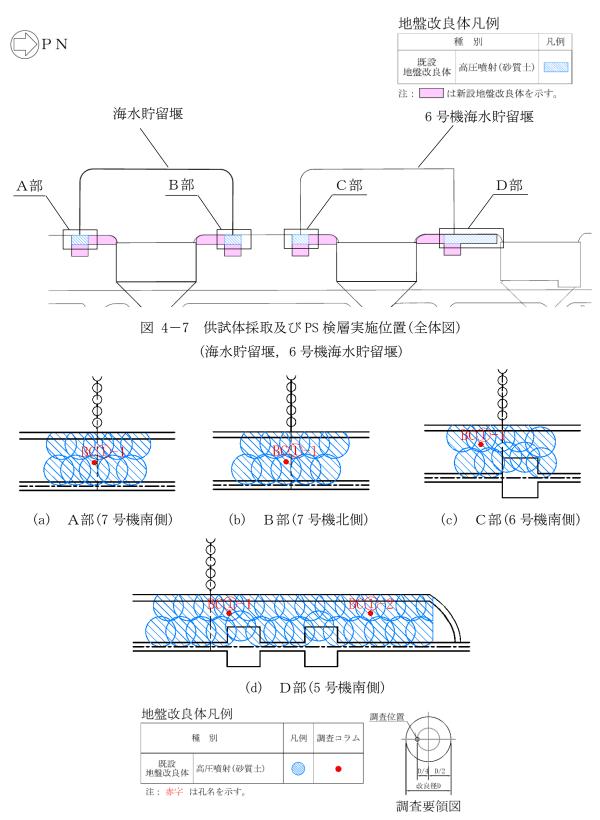



図 4-8 供試体採取及び PS 検層実施位置(拡大図) (海水貯留堰, 6 号機海水貯留堰)

(参考) 6-35

267

表 4-8 既設地盤改良体の試験結果

(海水貯留堰,6号機海水貯留堰・高圧噴射(砂質土))

	湿潤密度		間隙率		一軸月	一軸圧縮強度		P波速度		皮速度	h∼	γ関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武竹数	$(g/cm^3)$	此个行数	11.加干均	此什致	$(kN/m^2)$	*	(m/s)	*	(m/s)	此不好效	11.加干均
5号機南側BC①-1	1	1.779	_	_	1	2360	5	2032	5	929	2	
5号機南側BC①-2	1	1.852	_	_	1	1160	5	2058	5	880	2	図4-9を
6号機南側BC①-1	2	1.606	_	_	2	1400	5	2327	5	912	2	参照の
7号機北側BC①-1	1	1.872	_	_	1	1770	5	2520	5	1111	2	こと
7号機南側BC①-1	1	1.895	-	_	1	1690	5	2328	5	1181	2	
平均值	6	1.77	-	_	6	1630	25	2253	25	1003	10	
標準偏差	0.	. 132		-		570		263		170		
変動係数	0.	. 075		-		0.350		0.117		0. 170		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

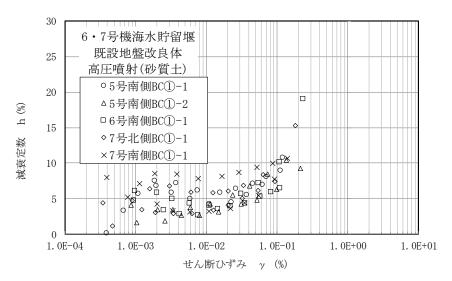
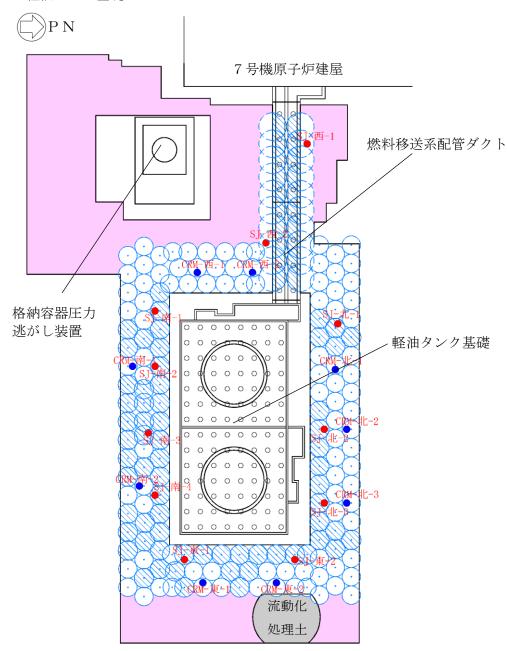




図 4-9 減衰定数のひずみ依存特性 (海水貯留堰,6号機海水貯留堰・高圧噴射(砂質土))

# b. 軽油タンク基礎



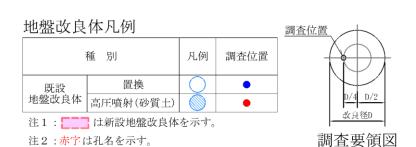



図 4-10 供試体採取及び PS 検層実施位置 (軽油タンク基礎)

(参考) 6-37 269

表 4-9 既設地盤改良体の試験結果(軽油タンク基礎・置換)

	湿潤密度		間隙率		一軸圧縮強度		P波速度		S波速度		h∼	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武什奴	$(g/cm^3)$	武什奴	化加平均	武科教	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什数	化剂平均
CRM-西-1	9	1.827	-	_	9	4452	19	2391	19	1261	_	
CRM-西-2	9	1.900	4	0.479	9	5039	19	2439	19	1277	4	
CRM-南-1	9	1.839	12	0.487	9	5663	21	2506	21	1370	8	
CRM-南-2	9	1. 791	-	_	9	3942	24	2374	24	1251	_	図4-11を
CRM-東-1	9	1.834	_	_	9	3654	25	2265	25	1149	_	参照の
CRM-東-2	9	1. 781	4	0.544	9	4820	21	2815	21	1443	4	こと
CRM-北-1	9	1.908	_	_	9	5383	17	2458	17	1381	_	
CRM-北-2	9	1.822	-	_	9	4031	16	2309	16	1258	-	
CRM-北-3	9	1.940	4	0.481	9	4881	18	2516	18	1407	4	
平均値	81	1.85	24	0.49	81	4652	180	2451	180	1305	20	
標準偏差	0.	. 059	0	. 025	1	254		336		200		
変動係数	0.	. 032	0	. 050	0	. 270	0	. 137	0	. 153		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 4-10 既設地盤改良体の試験結果(軽油タンク基礎・高圧噴射(砂質土))

	湿剂	閏密度	間	隙率	一軸压	王縮強度	P波	皮速度	S波	速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武什奴	$(g/cm^3)$	武什致	加州均	武什致	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什数	11. 加平均
SJ-西-1	9	1.620	4	0.646	9	3408	15	1751	15	630	4	
SJ-西-2	9	1.578	4	0.596	9	2984	16	1669	16	787	4	
SJ-南-1	9	1.692	-	_	9	3087	19	2007	19	1010	-	
SJ-南-2	9	1.806	_	_	9	3390	20	2207	20	994	_	
SJ-南-3	9	1.864	4	0.467	9	4297	22	1869	22	978	4	図4-12を
SJ−南−4	9	1. 794	_	_	9	3242	24	1955	24	890	_	参照の
SJ-東−1	9	1. 903	12	0.458	9	3806	24	2195	24	929	8	こと
SJ-東-2	9	1.780	_	_	9	4239	20	1873	20	794	_	
SJ-北-1	9	1.677	-	_	9	3058	17	1734	17	741	_	
SJ-北-2	9	1.646	4	0.481	9	3154	17	2121	17	941	4	
SJ-北-3	9	1.699	-	-	9	3516	17	1997	17	807	-	
平均值	99	1.73	28	0.51	99	3471	211	1957	211	874	24	
標準偏差	0.	. 141	0	. 082	8	194	382		260			
変動係数	0.	. 081	0.	. 162	0.	. 258	0.	. 195	0.	. 297		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

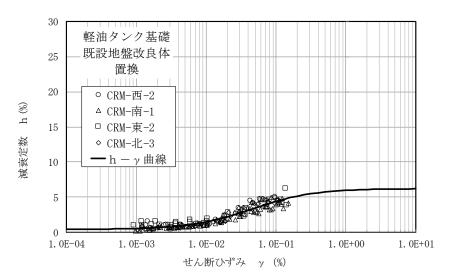



図 4-11 減衰定数のひずみ依存特性(軽油タンク基礎・置換)

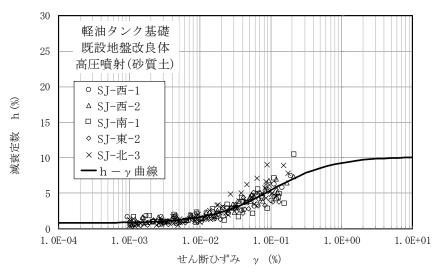
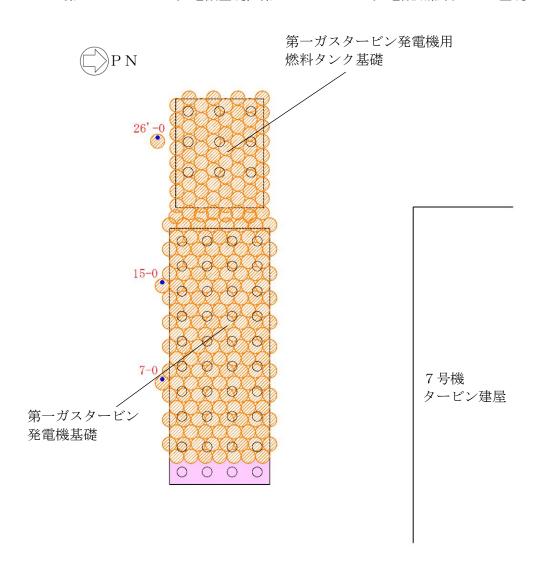
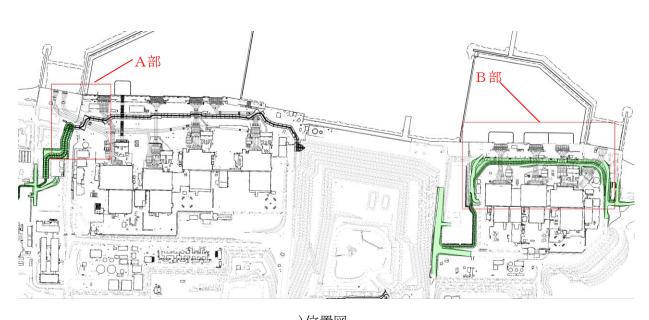
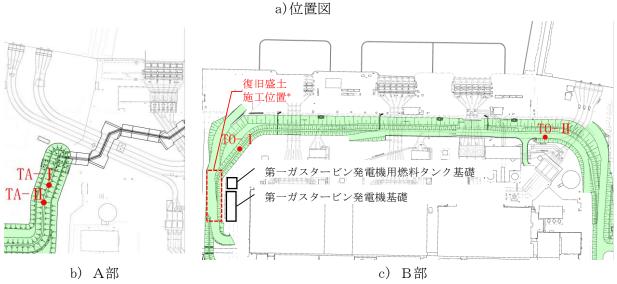




図 4-12 減衰定数のひずみ依存特性(軽油タンク基礎・高圧噴射(砂質土))

# c. 第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎




# 地盤改良体凡例


;	種別	凡例	調査位置
既設 地盤改良体	機械攪拌		•

注1: [1] は新設地盤改良体を示す。

注2:赤字は孔名を示す。

図 4-13 供試体採取及び PS 検層実施位置(1/2) (第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)





 種 別
 凡例
 調査位置

 既設地盤改良体
 改良盛土
 ●

注:赤字は孔名を示す。

注記*:常設代替交流電源装置基礎(第一ガスタービン発電機基礎、第一ガスタービン発電機用燃料タンク基礎)の設置時に防潮堤盛土を一部撤去・復旧した箇所を「復旧盛土」と称す。

図 4-13 供試体採取及び PS 検層実施位置(2/2) (第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎)

表 4-11 既設地盤改良体の試験結果

(第一ガスタービン発電機基礎, 第一ガスタービン発電機用燃料タンク基礎・機械攪拌)

	湿剂	閏密度	間	隙率	一軸原	王縮強度	P波	g 速度	S波	速度	h~	γ関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	李和 粉	孔別平均
	武州数	$(g/cm^3)$	武什致	11.加平均	武什奴	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什数	1. 加平均
7-0	3	2.074	-	_	3	6013	12	1683	12	679	3	図4-14を
15-0	3	1.951	-	_	3	3400	12	1592	12	510	3	参照の
26'-0	3	1.944	1	1	3	6500	13	1131	13	518	3	とし
平均値	9	1. 99	-	I	9	5304	37	1459	37	568	9	$\setminus$
標準偏差	0.	. 102		-	13	981		502	:	294		
変動係数	0.	. 051		-	0.	. 373	0.	. 344	0.	. 518		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 4-12 既設地盤改良体の試験結果

(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎・改良盛土)

	湿剂	閏密度	間	隙率	一軸原	王縮強度	P波	皮速度	S波	皮速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数 *2	孔別平均	試料数 *2	孔別平均	試料数	孔別平均
		$(g/cm^3)$				$(kN/m^2)$	**2	(m/s)	**2	(m/s)		
TA- I	_	_	_	_	_	_	10	1803	10	1029	3	
TA− II	_	_	_	_	_	_	10	1759	10	961	3	. ISB 4 1 E 3
T0- I	-	_	-	_	_	_	3	1357	3	710	1	図4-15を
T0- II	_	_	_	_	_	_	3	1490	3	783	1	参照の
防潮堤盛土*1	119	1.678	_	-	119	927	-	-	-	-	_	こと
復旧盛土*1	6	1.917	_	-	6	708	_	_	_	-	_	
平均値	125	1.69	-	ı	125	923	26	1698	26	938	8	
標準偏差	0.	. 200		_		634		600		334		
変動係数	0.	. 116		-	0.	. 687	0	. 353	0	. 356		

注記*1:受入れ検査時の供試体の試験結果を示す。

*2: PS検層の測定区間長1mを一つの試料数と見なす。

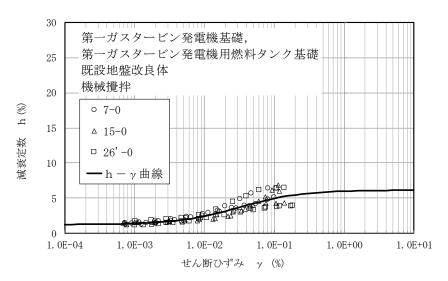



図 4-14 減衰定数のひずみ依存特性

(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎・機械攪拌)

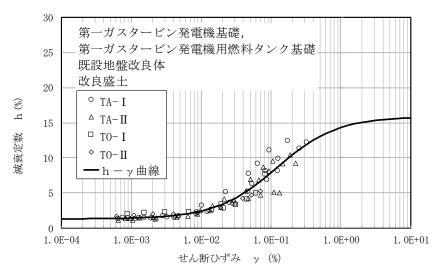



図 4-15 減衰定数のひずみ依存特性

(第一ガスタービン発電機基礎,第一ガスタービン発電機用燃料タンク基礎・改良盛土)

# d. 6号機軽油タンク基礎 P N6 号機原子炉建屋 6号機軽油タンク基礎 地盤改良体凡例 調査位置 種 別 凡例 調査位置 置換 既設 地盤改良体 D/2 高圧噴射(砂質土) 改良径D 高圧噴射(粘性土) 調査要領図 注1: は新設地盤改良体を示す。 注2:赤字は孔名を示す。

図 4-16 供試体採取及び PS 検層実施位置 (6 号機軽油タンク基礎)

(参考) 6-44 276

表 4-13 既設地盤改良体の試験結果(6号機軽油タンク基礎・置換)

	湿剂	閏密度	間	隙率	一軸压	王縮強度	P波	<b>b</b> 速度	S波	逐速度	h~	γ関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武什致	$(g/cm^3)$	武什致	化加平均	武什致	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什数	北別平均
CRM-西-1	9	1.772	-	_	9	6216	11	2388	11	1221	_	
CRM-西-2	9	1.801	4	0.506	9	7067	11	2409	11	1288	4	
CRM-南-1	9	1.756	-	_	9	6846	11	2408	11	1220	-	
CRM-南-2	9	1.804	4	0.506	9	6041	11	2414	11	1193	4	図4-17を
CRM-南-3	9	1. 791	_	_	9	6623	12	2427	12	1290	_	参照の
CRM-東-1	9	1.868	_	_	9	7956	20	2593	20	1378	_	こと
CRM-東-2	9	1.899	12	0.460	9	7560	24	2589	24	1394	8	ت ت
CRM-北-1	9	1. 994	-	_	9	9353	21	2954	21	1483	-	
CRM-北-2	9	1.910	4	0.436	9	6922	22	2908	22	1465	4	
CRM-北-3	9	1.873	-	_	9	6141	24	2665	24	1353	-	
平均值	90	1.85	24	0.47	90	7072	167	2628	167	1356	20	
標準偏差	0.	. 079	0.	. 027	20	062		246		151		
変動係数	0.	. 043	0.	. 058	0.	. 291	0.	. 094	0.	. 111		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 4-14 既設地盤改良体の試験結果 (6号機軽油タンク基礎・高圧噴射(砂質土))

	湿剂	閏密度	間	隙率	一軸原	王縮強度	P波	皮速度	S波	速度	h~	γ関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	此个好	$(g/cm^3)$	此个十数	11.加干均	此什数	$(kN/m^2)$	*	(m/s)	*	(m/s)	此个子奴	北加干均
Sj-S-北-1	9	1.922	-	-	9	16002	11	2440	11	1280	-	図4-18を
Sj-S-北-2	9	1.876	12	0.466	9	10739	9	2120	9	1030	8	参照の
Sj-S-北-3	9	1.854	4	0.459	9	8220	8	2260	8	1080	4	多無のこと
Sj-S-北-4	9	1.819	4	0.494	9	4186	5	2210	5	1110	4	J
平均值	36	1.87	20	0.47	36	9787	33	2274	33	1138	16	
標準偏差	0.	. 095	0	. 026	6	313		130		106		
変動係数	0.	. 051	0.	. 056	0.	. 645	0	. 057	0.	. 093		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 4-15 既設地盤改良体の試験結果(6号機軽油タンク基礎・高圧噴射(粘性土))

	湿剂	関密度	間	隙率	一軸原	王縮強度	P波	皮速度	S波	を速度	h∼	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武什致	$(g/cm^3)$	武什致	化加平均	武什奴	$(kN/m^2)$	*	(m/s)	*	(m/s)	武作奴	化加平均
Sj-C-西-1	9	1.637	-	-	9	4047	10	1880	10	850	-	
Sj-C-西-2	9	1.589	4	0.648	9	2213	10	1930	10	850	4	
Sj-C-南-1	9	1.590	_	_	9	3413	9	1760	9	690	6	
Sj-C-南-2	9	1.539	12	0.638	9	2646	10	1730	10	740	2	図4-19を
Sj-C-南-3	9	1.514	-	_	9	2531	9	1730	9	680	_	参照の
Sj-C-北-1	9	1.517	-	_	9	2986	11	1760	11	700	_	こと
Sj-C-北-2	9	1.590	-	_	9	2074	10	1760	10	700	_	
Sj-C-東-1	9	1.590	4	0.611	9	2007	5	1940	5	860	4	
Sj-C-東-2	9	1.604	-	_	9	3154	4	1940	4	810	-	
平均值	81	1.57	20	0.64	81	2786	78	1811	78	756	16	
標準偏差	0.	. 073	0.	. 048	1	349		84		72		
変動係数	0.	. 047	0.	. 076	0.	. 484	0.	. 046	0.	. 095		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

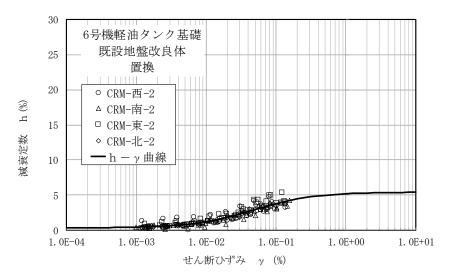



図 4-17 減衰定数のひずみ依存特性(6号機軽油タンク・置換)

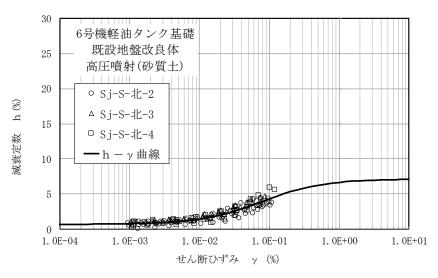



図 4-18 減衰定数のひずみ依存特性(6号機軽油タンク・高圧噴射(砂質土))

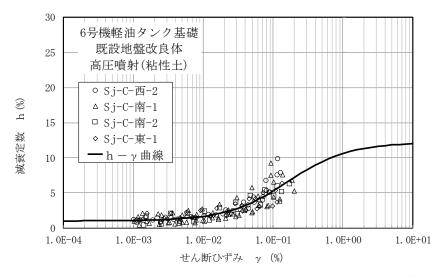



図 4-19 減衰定数のひずみ依存特性(6号機軽油タンク・高圧噴射(粘性土))

(参考) 6-46

### 4.2.3 解析用物性値と設定根拠との対応

既設地盤改良体の解析用物性値を表 4-16 に、その設定根拠を表 4-17 に示す。なお、 本資料で示す解析用物性値は、地盤改良体の改良部の物性値を示す。地盤改良体の配置に 応じた未改良部(原地盤)を含めた物性値については、各施設の耐震計算書に記載する。

表 4-16 既設地盤改良体の物性値

	対象施設			6・7号機 海水貯留堰		/ク基礎, 系配管ダクト		スタービン発電機 - ビン発電機用燃		6長	骨機軽油タンク基	碰
	種別 (地盤種別)			高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	機械攪拌	改良盛土	土質安定 処理土	置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物理	密度	ρ	$(g/cm^3)$	1.77	1.85	1.73	1.99	1.69	1.85	1.85	1.87	1. 57
特性	間隙率	n		0.49	0.49	0.51	0.49	0.48	0.48	0. 47	0. 47	0.64
	動せん断弾性係数	$G_{\mathrm{ma}}$	$(kN/m^2)$	1. $78 \times 10^6$	$3.15 \times 10^6$	$1.32 \times 10^6$	6. $42 \times 10^5$	$1.49 \times 10^{6}$	9. $58 \times 10^3$	$3.40 \times 10^{6}$	2. $42 \times 10^6$	8. $97 \times 10^5$
変形	基準平均有効拘束圧	$\sigma$ ma	$(kN/m^2)$	98. 0	98.0	98. 0	98. 0	98. 0	98. 0	98.0	98.0	98.0
特性	ポアソン比	ν		0. 33	0. 33	0. 33	0.33 (0.43)	0. 33 (0. 28)	0. 20	0. 33	0. 33	0. 33
	減衰定数の上限値	h max		0.050	0.060	0.100	0.060	0.160	0.050	0.050	0.070	0.120
強度特性	粘着力	c	$(kN/m^2)$	815	2326	1736	2652	462	100	3536	4894	1393

注記* :括弧内の数字は、地下水位以浅の値を表す。

表 4-17 既設地盤改良体の設定根拠

	対象施設		6・7号機 海水貯留堰		ンク基礎, 系配管ダクト		スタービン発電機		65	号機軽油タンク基	礎
	種別 (地盤種別)		高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	機械攪拌	改良盛土	土質安定 処理土	置換	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物理	密度	ρ			物理試験			工法別 平均値* ¹		物理試験	
特性	間隙率	n	工法別 平均値 ^{*2}	物理	試験	工法別 平均値 ^{*2}	工法別 平均値* ³	工法別 平均値* ³		物理試験	
	動せん断弾性係数	G _{ma}		湿潤	間密度及びPS	<b></b>		文献*4	湿潤	割密度及びPS	<b>倹層</b>
変形	基準平均有効拘束圧	σ _{ma} ,					慣用値				
特性	ポアソン比	ν		慣用値		慣用値 (PS検層)*5	慣用値 (PS検層)*5	文献*4		慣用値	
	減衰定数の上限値	h max	文献*6				動的変	形試験			
強度特性	粘着力	c						一軸圧縮試験			

- 注記*1:置換工法における湿潤密度の工法別平均値
  - *2:高圧噴射(砂質土)における間隙率の工法別平均値
  - *3:置換工法における間隙率の工法別平均値

### 4.3 新設地盤改良体

### 4.3.1 解析用物性値の設定方針

# (1) セメント改良(置換工法,機械攪拌工法,高圧噴射撹拌工法)

新設地盤改良体(セメント改良)に分類する地盤改良体は,S 波速度や一軸圧縮強度に関しては設計値に基づき設定し、その他の解析用物性値は文献に基づき設定する。ただし、近傍に既設地盤改良体(セメント改良)があり、その地盤条件、施工方法及び設計強度が同一である場合は、近傍の既設地盤改良体(セメント改良)の解析用物性値を用いる。

なお、特記なき限り全応力解析における解析用物性値の設定方針と有効応力解析における解析用物性値の設定方針は同一である。

新設地盤改良体の設計値を表 4-18 及び表 4-19 に示す。

格納容器圧力逃がし装置基礎 大物搬入 対象施設 種別 高圧噴射 置換 (地盤種別) 8000 8000 8000 投計一軸圧縮強度  $q_{ud} = (kN/m^2)$ 840 840  $V_{sd} = (kN/m^2)$ 840 設計S波速度

表 4-18 新設地盤改良体の設計値(全応力解析)

表 4-19 新設地盤改良体の設計値(有効応力解析)

	対象施設			6・7号機治	海水貯留堰	6・7号機 スクリーン室		7号機取水路 冷却用海水取		軽油タン 燃料移送系		6号機軽油	タンク基礎
	種別 (地盤種別)			高圧噴射 (砂質土)	高圧噴射 (粘性土)	高圧噴射 (砂質土)	置換	機械攪拌	高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	置換	高圧噴射 (粘性土)
設計	設計一軸圧縮強度	$\rm q_{ud}$	$(kN/m^2)$	1000	1000	1000	1000	1000	1000	8000	8000	8000	5000
値	設計S波速度	$V_{\rm sd}$	$(kN/m^2)$	600	600	600	_	_	_	840	840	840	800

注:「一」は設計値の指定が無いことを示す。

### a. 動せん断弾性係数Gma

新設地盤改良体(セメント改良)の動せん断弾性係数 $G_m$ は、密度 $\rho$ 、設計S波速度 $V_{sd}$ より、(式7)に基づき初期せん断弾性係数 $G_0$ を設定する。

$$G_0 = \rho \cdot V_{sd}^2 \tag{\vec{\chi}} 7$$

設計 S 波速度の指定がない地盤改良体について、砂質土を主たる改良対象土層とした地盤改良体については文献(建築物のための改良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工法、日本建築センター、平成 14 年 11 月)に基づき設計一軸圧縮強度に対応する S 波速度を設定する。

S波速度と g,の関係図を図 4-20 に示す。

注:「一」は設計値の指定が無いことを示す。

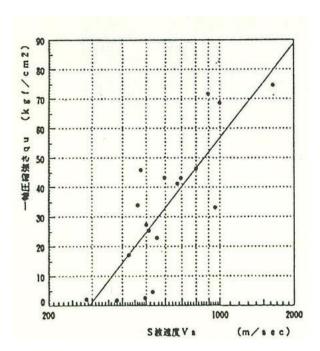



図 4-20 S波速度と qu の関係図

(引用:建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法,

日本建築センター, 平成14年11月)

# b. 密度 ρ 及び間隙率 n

新設地盤改良体(セメント改良)の密度  $\rho$  と間隙率 n については,種別毎(置換,高圧噴射)に設定する。高圧噴射工法の密度については,改良対象地盤の物理試験から設定する。

### c. ポアソン比 v

新設地盤改良体(セメント改良)のポアソン比vについては、工法別、改良地盤種別に応じて既設地盤改良体の実績値から設定する。ただし、有効応力解析における地下水以深のポアソン比vは、文献(液状化による構造物被害予測プログラム FLIP において必要な各種パラメタの簡易設定法(港湾技研資料 No. 869)、運輸省港湾技術研究所、1997)に基づき、慣用値の0.33に設定する。

### d. $G/G_0$ , $h \sim \gamma$ 曲線(全応力解析)

全応力解析においては、動的変形特性として $G/G_0$ , $h\sim\gamma$  曲線の設定が必要となる。全応力解析における動的変形特性については、既設地盤改良体の動的変形試験に基づき種別毎(置換、高圧噴射)に設定する。設定に用いた既設地盤改良体の動的変形試験結果を図 4-21 に示す。

### e. 減衰定数の上限値 h max (有効応力解析)

有効応力解析においては、動的変形特性として減衰定数の上限値  $h_{max}$  の設定が必要となる。有効応力解析における動的変形特性については、文献(建築物のための改良地盤の設計及び品質管理指針-セメント 系固化材を用いた深層・浅層混合処理工法、日本建築センター、平成 14 年 11 月)を参考に設定する。

文献では、図 4-6 に示す結果に基づき、「減衰定数は  $1\times10^{-3}$  の軸ひずみにおいてほぼ  $5\%\sim10\%$ である」ことが示されており、文献に示される軸ひずみの最大値付近となる  $1\times10^{-3}$  よりも大きな領域において、減衰定数は 5%以上を示すものと判断できるとから、文献に基づき  $h_{max}$  は 5%と設定する。

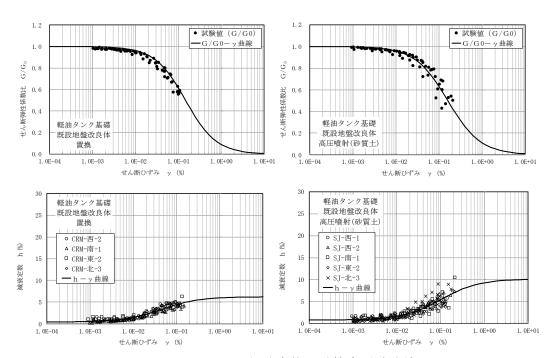



図 4-21 既設地盤改良体の動的変形試験結果 (全応力解析の物性設定に使用)

# f. 粘着力 c

新設地盤改良体(セメント改良)の粘着力 c については、設計一軸圧縮強度より設定する。文献(地盤工学用語辞典)より、一軸圧縮強度より求まる非排水せん断強度を粘着力として設定する。粘着力を設計一軸圧縮強度  $q_{ud}$  に基づき、(式 8)より設定する。

$$c = \frac{q_{ud}}{2} \tag{\textsterling 8}$$

ここで,

c : 粘着力

q ud : 設計一軸圧縮強度

### (2) 無筋コンクリート

新設地盤改良体(無筋コンクリート)に分類する地盤改良体は、剛性や一軸圧縮強度に関しては設計値に基づき設定し、その他の解析用物性値は文献に基づき設定する。

### a. 動せん断弾性係数Gma

新設地盤改良体 (無筋コンクリート) の動せん断弾性係数  $G_{ma}$  は、コンクリート標準示方書 [構造性能照査編] (土木学会、2002年制定) (以下、「コンクリート標準示方書」という。)に基づき、表 4-20 に示すようにコンクリートの設計基準強度  $f'_{ck}$  (=18N/mm²))と変形係数 E の関係から、(式 9) に基づき初期せん断弾性係数  $G_0$  を設定する。

$$G_0 = \frac{E}{2(1+v)} \tag{\textsterling 9}$$

表 4-20 コンクリートのヤング係数

		f'ck (N/mm²)	18	24	30	40	50	60	70	80
E.	(kN/mm²)	普通コンクリート	22	25	28	31	33	35	37	38
$E_c$	(KIN/IIIII )	軽量骨材コンクリート*	13	15	16	19	-	-	-	-

### * 骨材を全部軽量骨材とした場合

(引用:コンクリート標準示方書 構造性能照査編,土木学会,2002)

# b. 密度 ρ 及び間隙率 n

新設地盤改良体(無筋コンクリート)の密度  $\rho$  については、コンクリート標準示方書に基づき設定する。コンクリート標準示方書に示される無筋コンクリートの密度  $\rho$  を表 4-21 に示す。なお、新設地盤改良体(無筋コンクリート)は、線形弾性体としてモデル化することから間隙率 n は設定しない。

表 4-21 コンクリートの単位体積重量

材	料	単位重量 (kN/m³)	材料	単位重量 (kN/m³)
鋼·鋳釒	何・鍛鋼	77	コンクリート	22. 5~23. 0
鋳	鉄	71	セメントモルタル	21.0
アルミ	ニウム	27. 5	木 材	8
鉄筋コン	クリート	24. $0 \sim 24.5$	瀝 青 材	11
プレストレス!	トコンクリート	24. 5	アスファルトコンクリート舗装	22.5
鉄筋軽量骨材	コンクリート	18. 0	軽量骨材コンクリート (骨材全部が軽量骨材)	16.5

(引用:コンクリート標準示方書 構造性能照査編,土木学会,2002)

### c. ポアソン比 ν

新設地盤改良体 (無筋コンクリート) のポアソン比 $_{\nu}$  については、コンクリート標準 示方書に基づき 0.2 として設定する。

# 4.3.2 解析用物性値と設定根拠との対応

新設地盤改良体の物性値を表 4-22 及び表 4-23 に、設定方針との対応を表 4-24 及び表 4-25 に示す。

表 4-22 新設地盤改良体の物性値(全応力解析)

	対象施設			格納容 逃がしを		大物搬入 建屋
	種別			置換	高圧噴射	置換
物理特 性	密度	ρ	$(g/cm^3)$	1.85	2.05	1.85
	動せん断弾性係数	$G_{0}$	$(kN/m^2)$	$1.31 \times 10^{6}$	$1.45 \times 10^6$	$1.31 \times 10^{6}$
動的	ポアソン比	ν		0. 302	0. 375	0.302
変形特性	$G/G_0 - \gamma^{*1}$			$1/(1+10.1 \gamma^{1.21})$	$1/(1+8.06 \gamma^{1.14})$	$1/(1+10.1 \gamma^{1.21})$
	$h = \gamma^{*1}$		(%)	$\gamma / (0.172 \gamma + 0.00783) + 0.401$	$\gamma / (0.107 \gamma + 0.0109) + 0.790$	$\gamma \nearrow (0.172 \gamma + 0.00783) + 0.401$

注記*1:γはせん断歪み(%)を示す。

表 4-23 新設地盤改良体の物性値(有効応力解析)

	対象施設			6・7号機海水貯留堰		6・7号機 スクリーン室		6·7号機取水路, 補機冷却用海水取水路			軽油タンク基礎, 燃料移送系配管ダクト		6号機軽油タンク基礎	
	種別 (地盤種別)			高圧噴射 (砂質土)	高圧噴射 (粘性土)	高圧噴射 (砂質土)	無筋コン クリート	置換	機械攪拌	高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	置換	高圧噴射 (粘性土)
物理	密度	ρ	$(g/cm^3)$	1. 94	1.81	1.94	2.30	1. 85	1. 94	1.94	1.85	2.05	1. 85	1.91
特性	間隙率	n		0.49	0.64	0.49	1	0.48	0.49	0.49	0.48	0.49	0. 48	0.64
	動せん断弾性係数	G m a	$(kN/m^2)$	$6.98 \times 10^5$	6. $52 \times 10^5$	6. 98×10 ⁵	9. $17 \times 10^6$	2. $40 \times 10^5$	2. $51 \times 10^5$	6. $98 \times 10^5$	1. $31 \times 10^6$	1. $45 \times 10^6$	1. $31 \times 10^6$	$1.22 \times 10^6$
変形	基準平均有効拘束圧	σ m a	$(kN/m^2)$	98.0	98. 0	98. 0	1	98.0	98.0	98. 0	98. 0	98.0	98. 0	98. 0
特性	ポアソン比	ν		0. 33	0. 33	0.33	0.20	0. 33	0. 33	0.33	0.33	0. 33	0. 33	0. 33
	減衰定数の上限値	h m a x		0.050	0.050	0.050	ı	0.050	0.050	0.050	0.050	0.050	0.050	0.050
強度特性	粘着力	c	$(kN/m^2)$	500	500	500	=	500	500	500	4000	4000	4000	2500

表 4-24 新設地盤改良体の設定方針との対応(全応力解析)

	対象施設		格納容器圧力送	大物搬入建屋		
種別			置換	高圧噴射 (砂質土)	置換	
物理特性	密度	ρ	工法別平均値 に基づき設定	対象土層の最大値 に基づき設定	工法別平均値 に基づき設定	
	動せん断弾性係数 G ₀		設計S波速度, 密度に基づき設定	設計S波速度, 密度に基づき設定	設計S波速度, 密度に基づき設定	
動的変	ポアソン比	ν		工法別実績値		
形特性	$G/G_0-\gamma$		工法別実績値 軽油タンク基礎(置換) に基づき設定	軽油タンク基礎 (高圧噴射(砂質土))	工法別実績値 軽油タンク基礎(置換) に基づき設定	
1.2.	$h-\gamma$			に基づき設定		

# 表 4-25 新設地盤改良体の設定方針との対応(有効応力解析)

対象施設			6·7号機 海水貯留堰	6・7号機 スクリーン室	6·7号機取水路, 補機冷却用海水取水路			軽油タンク基礎, 燃料移送系配管ダクト		6号機軽油タンク基礎		
種別 (地盤種別)			高圧噴射A,B 高圧噴射 (砂質土) (粘性土)	高圧噴射 (砂質土)	無筋コン クリート	置換	機械攪拌 高圧噴射 (砂質土)	置換	高圧噴射 (砂質土)	置換	高圧噴射 (粘性土)	
物理	密度	ρ	対象土層の最大値		文献*1	工法別 平均値	対象土層の最大値	工法別 平均値	対象土層 の最大値	工法別 平均値	対象土層 の最大値	
特性	間隙率	n	工法別平均値		- *2	工法別平均値						
	動せん断弾性係数	G ma	設計S波速度 密度に基づき		文献*1		ら推定したS波速度, Eに基づき設定	設計S波速度, 密度に基づき設定				
変形	基準平均有効拘束圧	σ ,	慣用値*4	_ *2	慣用値*4							
特性	ポアソン比	ν	慣用値*4	文献*1	慣用値*4							
	減衰定数の上限値	h max	文献*3	_ *2	文献*3							
強度特性	粘着力	с	設計一軸圧縮	-* ²	設計一軸圧縮強度							
注記*1:コンクリート標準示方書 構造性能照査編(社団法人土木学会,2002年) *2:無筋コンクリートは線形弾性体としてモデル化 (パラメウなし) *3:液状化による構造物被害予想プログラムFLPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所,平成9年6月) *4:改訂版 建築物のための改良地盤の設計及び品質管理指針ーセメント系固化材を用いた深層・浅層混合処理工法ー (日本建築センター,平成14年11月)												

# 5. 新設地盤改良体の品質確認方針

# 5.1 品質確認方針

新設地盤改良体について、各新設地盤改良体の品質確認方針を表 5-1 に示す。表 5-1 に示すとおり、建物・構築物、土木構造物ともに、強度及び剛性を品質確認項目とする。

表 5-1 新設地盤改良体の品質確認方針

	<u> </u>	新設地盤改良	品質確認項目		
対象施設		工法			目的
	大物搬入建屋	置換工法 (CD 掘削工法)	変形抑制	強度及び剛性	
建物・		置換工法 (CD 掘削工法)			
構築物	格納容器圧力逃がし装置基礎	置換工法(開削工法)	変形抑制	強度及び剛性	
		高圧噴射撹拌工法			
	海水貯留堰	高圧噴射撹拌工法	変形抑制	強度及び剛性	
	スクリーン室	高圧噴射撹拌工法	浮上り防止	強度及び剛性	
		置換工法(地中連壁壁工法)			
	E÷	機械撹拌工法	河 [ 内井山	35 库 7 ~2 図 1 上	
	取水路	高圧噴射撹拌工法	浮上り防止	強度及び剛性	
		無筋コンクリート			
	補機冷却用海水取水路	高圧噴射撹拌工法	浮上り防止	強度及び剛性	
	叔油为人为甘朮林	置換工法 (CD 掘削工法)	亦形物制	沙库亚双网队	
	軽油タンク基礎	高圧噴射撹拌工法	変形抑制	強度及び剛性	
	燃料移送系配管ダクト	置換工法 (CD 掘削工法)	変形抑制	強度及び剛性	
土木		高圧噴射撹拌工法	変形抑制	1年/文/人 〇 阿川生	
構造物	6 号機海水貯留堰	高圧噴射撹拌工法	変形抑制	強度及び剛性	
	6号機スクリーン室	高圧噴射撹拌工法	浮上り防止	強度及び剛性	
		置換工法(地中連壁壁工法)		35 库 T 7 8 2 1 1 4 1	
	6号機取水路	機械撹拌工法	   浮上り防止		
	0 万傚以小岭	高圧噴射撹拌工法	存上り例止	強度及び剛性	
		無筋コンクリート			
	   6 号機軽油タンク基礎	置換工法(開削工法)	変形抑制	強度及び剛性	
	□ 万1攻牲佃クイク 左旋	高圧噴射撹拌工法	<b>炎</b> ////////////////////////////////////	対及及の側性	
	第一ガスタービン発電機基礎,				
	第一ガスタービン発電機用燃	機械撹拌工法	変形抑制	強度及び剛性	
	料タンク基礎				

# 5.2 品質確認準拠基準について

地盤改良工法の基準指針として一般的な文献を表 5-2 に、地盤改良の目的及び構造形式に係る分類と適用基準を表 5-3 に示す。

地盤改良工法に係る諸基準・指針については、地盤改良の目的及び構造形式によって分類される。品質管理については、この分類に対応する基準指針を用いて実施する。

表 5-2 地盤改良工法の基準・指針

基準・指針名	基準略称
陸上工事における深層混合処理工法設計・施工マニュアル 改訂版, (財)土木研究センター,平成16年3月	陸上工事マニュアル
港湾・空港における深層混合処理工法技術マニュアル, (財)沿岸技術研究センター,平成26年10月	港湾・空港マニュアル
建築基礎構造設計指針, 日本建築学会,2001年改定	建築基礎指針
建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を 用いた深層・浅層混合処理工法,日本建築センター,平成14年5月	建築センター指針
乾式キャスク貯蔵建屋基礎構造の設計に関する技術指針, 日本電気協会,平成21年	JEAG4616

表 5-3 地盤改良の目的及び構造形式に係る分類と適用基準 (1/2)

目的	直接支持	変形抑制					
構造形式	被	横造物 横造物 地盤 世盤 改良 非液状化層 支持層 支持層					
対象 施設	無し	大物搬入建屋、6号機軽油タンク基礎					
適用	建築基礎指針,	tt					
基準	建築センター指針, JEAG4616	陸上工事マニュアル					

表 5-3 地盤改良の目的及び構造形式に係る分類と適用基準 (2/2)

目的	変形抑制	浮上り防止	変形抑制
構造形式	液 地	地盤 改良 排液状化層 非液状化層	護岸(鋼矢板) 地盤改良 液状化層 非液状化層 貯留堰(鋼管矢板)
対象施設	格納容器圧力逃がし装置基礎, 軽油タンク基礎, 6号機軽油タンク基礎, 燃料移送系配管ダクト	スクリーン室, 取水路, 補機冷 却用海水取水路, 6 号機スクリ ーン室, 6 号機取水路	海水貯留堰,6 号機海水貯留堰
適用 基準	陸上工事マニュアル	陸上工事マニュアル	港湾・空港マニュアル

### 5.3 新設地盤改良体の事後調査結果について

新設地盤改良体として設計値に基づき解析用物性値を設定している施設のうち,竣工後の調査・試験の結果があるものについては,解析用物性値の設定が妥当であるかどうかの確認を行う。

妥当性の確認方法は、設計値に基づき設定している解析用物性値と、竣工後の試験結果を用いて既設地盤改良体と同様の物性設定を行った物性値の比較を行い、強度と剛性の観点で解析用物性値の設定が保守的であることを確認する。

### 5.3.1 6·7 号機海水貯留堰

 $6\cdot7$  号機海水貯留堰における新設地盤改良体の事後調査位置図を図 5-1 に、試験結果を表 5-4、表 5-5 及び図 5-2、図 5-3 に、妥当性確認結果を表 5-6、表 5-7 に、試験結果を元に既設地盤改良体と同等の整理で物性値を定めた値を表 5-8、表 5-9 に示す。

追加調査の結果, 追加調査による強度及び剛性については設計値よりも上回る結果となった。

よって 6・7 号機海水貯留堰における新設地盤改良体については,強度・剛性の観点で現在の設定が保守的であり,新設地盤改良体の解析用物性値の設定は妥当である。

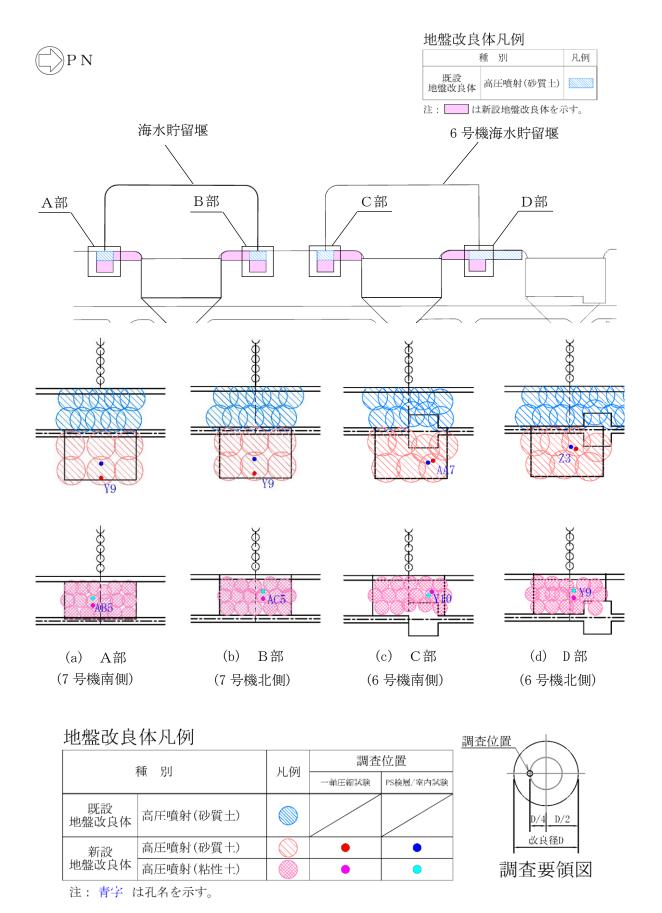



図 5-1 6・7 号機海水貯留堰における新設地盤改良体の調査位置図

表 5-4 6・7号機海水貯留堰/高圧噴射(砂質土)における新設地盤改良体の試験結果

	湿潤密度		間隙率		一軸圧縮強度		P波	逐速度	S波	i 速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	此个好	$(g/cm^3)$	叶竹奴	11.加干均	叫什奴	$(kN/m^2)$	*	(m/s)	*	(m/s)	此个子数	化加平均
7号機南側AB5	9	1.664	6	0.558	9	1986	5	2440	5	1295	1	図5-2を
7号機北側AC5	9	1.848	6	0.491	9	3365	5	2962	5	1322	1	参照の
6号機南側AA7	9	1.780	6	0.581	9	4756	5	2545	5	1287	1	参照のこと
6号機北側Z3	9	1.726	6	0.524	9	4089	6	2097	6	884	1	J J
平均值	36	1. 75	24	0.54	36	3549	21	2491	21	1182	4	
標準偏差	0.	. 093	0.	. 045	10	664	4	496		288		
変動係数	0.	. 053	0.	. 084	0.	. 469	0.	. 199	0	. 244		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 5-5 6・7号機海水貯留堰/高圧噴射(粘性土)における新設地盤改良体の試験結果

	湿潤密度		間隙率		一軸圧縮強度		P波	逐速度	S波	速度	h∼	γ関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	(g/cm ³ )		叶竹奴	11.加干均	此个好	$(kN/m^2)$	*	(m/s)	(m/s) *	(m/s)	以行数	化加干均
7号機南側Y9	9	1.547	6	0.650	9	3256	5	1835	5	915	1	図5-3を
7号機北側Y9	9	1.554	6	0.640	9	2309	5	2026	5	747	1	参照の
6号機南側Y10	9	1.610	6	0.641	9	5127	5	2236	5	931	1	多思のこと
6号機北側Y9	9	1.550	6	0.656	9	2565	5	2195	5	873	1	J
平均值	36	1.57	24	0.65	36	3314	20	2073	20	867	4	
標準偏差	0.	. 049	0.	. 034	1	696		198		140		
変動係数	0.	. 031	0.	. 053	0.	. 512	0.	. 096	0	. 162		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

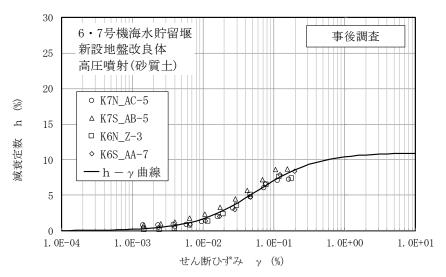



図 5-2 減衰定数のひずみ依存特性 (6・7 号機海水貯留堰/高圧噴射(砂質土))

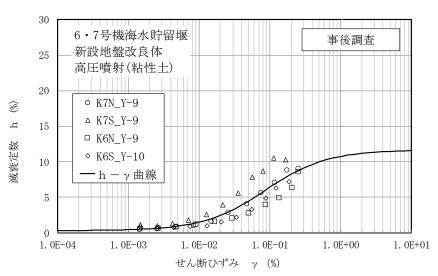



図 5-3 減衰定数のひずみ依存特性 (6・7号機海水貯留堰/高圧噴射(粘性土))

表 5-6 妥当性確認結果(強度)

		設計値	事後調査結果				
対象施設	種別	q _{u d}	平均值	標準偏差	$_{ m q}$ $_{ m u}$ $_{ m f}$ $ _{ m q}$ $_{ m u}$		
		$(kN/m^2)$	$q_{uf}$ $(kN/m^2)$	$\sigma_{\rm qu}$ $({\rm kN/m}^2)$	$(kN/m^2)$		
6・7号機	高圧噴射(砂質土)	1000	3549	1664	1885		
海水貯留堰	高圧噴射(粘性土)	1000	3314	1696	1618		

表 5-7 妥当性確認結果(剛性)

		設計値	事後調査結果			
対象施設	種別	$V s_d$ $(kN/m^2)$	平均値 Vs _f	標準偏差 σ _{Vs}	$V s_f - \sigma_{Vs}$ $(kN/m^2)$	
6・7号機	高圧噴射(砂質土)	600	$\frac{(kN/m^2)}{1182}$	(kN/m ² ) 288	894	
海水貯留堰	高圧噴射(粘性土)	600	867	140	727	

表 5-8 設計値と事後調査結果に基づく設計値との対比(高圧噴射(砂質土))

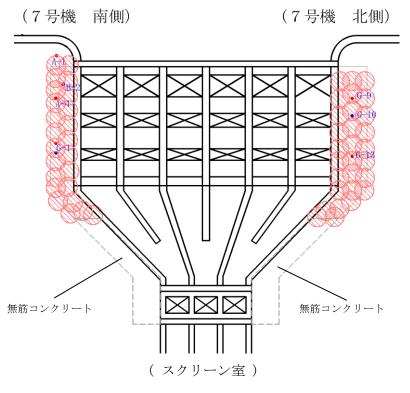
	名 称		新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別		高圧噴射,機械攪拌,置換	高圧噴射 (砂質土)	高圧噴射,機械攪拌,置換,改良盛土	高圧噴射 (砂質土)
理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.94	物理試験	1.75
特性	間隙率	n	既設地盤改良体の物理試験	0.49	物理試験	0.54
	動せん断弾性係数	$G_{ma}$	設計S波速度,密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	6. 98×10 ⁵	PS検層によるS波速度、密度に基づき設定	2. 44×10 ⁶
形	基準平均有効拘束圧	σ m a	慣用値* ²	98. 0	慣用値* ²	98. 0
特性	ポアソン比	ν	慣用値* ²	0.33	慣用値* ²	0.33
	減衰定数の上限値	h max	文献*1に基づき設定	0.050	動的変形特性に基づき設定	0.110
強度特性	粘着力	Ċ	設計一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	500	一軸圧縮強度 q "と粘着力 c との 関係に基づき設定	1775

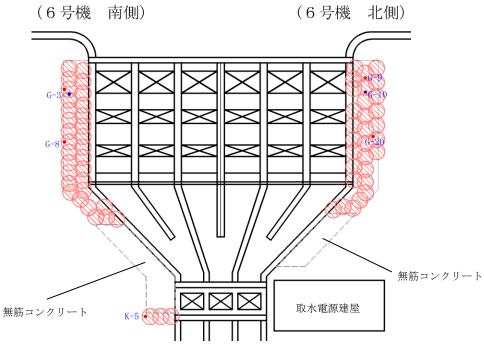
注記*1:改訂版 建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法-(日本建築センター、平成14年11月)

*2:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所、平成9年6月)

表 5-9 設計値と事後調査結果に基づく設計値との対比(高圧噴射(粘性土))

名 称			新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別		高圧噴射,機械攪拌,置換	高圧噴射 (粘性土)	高圧噴射,機械攪拌,置換,改良盛土	高圧噴射 (粘性土)
物理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.81	物理試験	1.57
特性	間隙率	n	既設地盤改良体の物理試験	0.64	物理試験	0.65
	動せん断弾性係数	G _{ma}	設計S波速度、密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	6. 52×10 ⁵	PS検層によるS波速度、密度に基づき設定	1.18×10 ⁶
変形	基準平均有効拘束圧	$\sigma_{ma}$ ,	慣用値* ²	98. 0	慣用値 ^{*2}	98. 0
特性	ポアソン比	ν	慣用値* ²	0.33	慣用値* ²	0.33
	減衰定数の上限値	定数の上限値 h max 文献*1に基づき設定		0.050	動的変形特性に基づき設定	0.117
強度特性	粘着力	c	設計一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	500	一軸圧縮強度 q 』と粘着力 c との 関係に基づき設定	1657


生 注記*1: 改訂版 建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法-(日本建築センター, 平成14年11月) *2: 液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所, 平成9年6月)


## 5.3.2 6・7 号機スクリーン室

 $6\cdot7$  号機スクリーン室における新設地盤改良体のうち高圧噴射撹拌工法の事後調査位置図を図 5-4 に、試験結果を表 5-10、図 5-5 に、妥当性確認結果を表 5-11、表 5-12 に、試験結果を元に既設地盤改良体と同等の整理で物性値を定めた値を表 5-13 に示す。

追加調査の結果, 追加調査による強度及び剛性については設計値よりも上回る結果となった。

よって,6・7号機スクリーン室における新設地盤改良体については,強度・剛性の観点で現在の設定が保守的であり,新設地盤改良体の解析用物性値の設定は妥当である。





地盤改良体凡例

	<del></del> 種 別	凡例	調査位置		
	作里がり	7677	一軸圧縮試験	PS検層/室内試験	
新設 地盤改良体			•	•	

(6号機スクリーン室)

注:青字 は孔名を示す。

図 5-4 6・7 号機スクリーン室における新設地盤改良体の調査位置図

(参考) 6-65 297

表 5-10 6・7 号機スクリーン室/高圧噴射(砂質土)における新設地盤改良体の試験結果

	湿剂	閏密度	間	隙率	一軸原	王縮強度	P波	皮速度	S波	逐速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	叶竹秋	$(g/cm^3)$	叫竹奴	机加干均	此什数	$(kN/m^2)$	*	(m/s)	*	(m/s)	叶竹奴	北加干均
7号機南側A1	9	1.578	-	-	9	4537	-	-	-	-	-	
7号機南側B2	-	_	_	_	_	_	10	2255	10	983	_	
7号機南側A4	9	1.633	-	_	9	4134	-	-	-	_	-	
7号機南側G1	9	1.565	6	0.669	9	5203	-	_	_	_	1	
7号機北側G9	11	1.691	_	_	11	5621	10	2253	10	980	_	
7号機北側G10	_	_	6	0.643	_	_	_	_	_	_	1	図5-5を
7号機北側G13	10	1.739	-	-	10	5963	-	-	_	_	_	参照の
6号機南側G3	11	1.731	6	0.644	11	6507	10	2063	10	932	1	こと
6号機南側G8	11	1.771	-	-	11	5653	-	-	_	_	-	
6号機南側K5	9	1.561	-	-	9	3358	-	-	_	_	-	
6号機北側G9	12	1.664	-	-	12	5261	-	-	-	-	-	
6号機北側G10	-	-	6	0.660	_	_	10	2278	10	1044	1	
6号機北側G20	10	1.617	-	_	10	3396	-	-	-	-	-	
平均値	101	1.66	24	0.65	101	5024	40	2212	40	985	4	
標準偏差	· 最差 0.164		0.	. 046	2	751		244		182		
変動係数		. 099		. 070		. 548	0.	. 110	0.	. 185		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

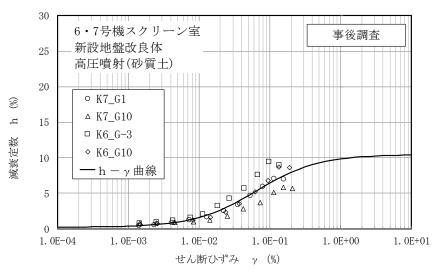



図 5-5 減衰定数のひずみ依存特性 (6・7 号機スクリーン室/高圧噴射(砂質土))

表 5-11 妥当性確認結果(強度)

		設計値	事後調査結果			
対象施設	種別	q _{ud} (kN/m ² )	平均値 q _{uf} (kN/m²)	標準偏差 σ _{q u} (kN/m²)	$\begin{array}{c} {\rm q}_{\rm uf} - \sigma_{\rm qu} \\ ({\rm kN/m}^2) \end{array}$	
6・7号機 スクリーン室	高圧噴射(砂質土)	1000	5024	2751	2273	

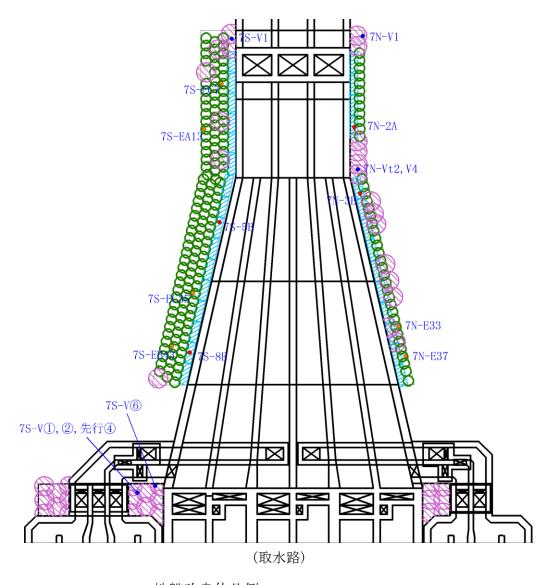
表 5-12 妥当性確認結果(剛性)

		設計値	事後調査結果			
対象施設	種別	$V s_d$ $(kN/m^2)$	平均値 Vs _f (kN/m²)	標準偏差 σ _{Vs} (kN/m²)	$V s_f - \sigma_{Vs}$ $(kN/m^2)$	
6・7号機 スクリーン室	高圧噴射(砂質土)	600	985	182	803	

表 5-13 設計値と事後調査結果に基づく設計値との対比(高圧噴射(砂質土))

	名 称		新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別	種別 高圧噴射,機械攪拌,置換		高圧噴射 (砂質土)	高圧噴射,機械攪拌,置換,改良盛土	高圧噴射 (砂質土)
理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.94	物理試験	1.66
特性	間隙率	n	既設地盤改良体の物理試験	0.49	物理試験	0.65
	動せん断弾性係数	G _{ma}	設計S波速度,密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	6. 98×10 ⁵	PS検層によるS波速度、密度に基づき設定	1.61×10 ⁶
形	基準平均有効拘束圧	$\sigma_{ma}$ ,	慣用値* ²	98. 0	慣用値 ^{*2}	98. 0
特性	ポアソン比	ν	慣用値* ²	0.33	慣用値* ²	0.33
	減衰定数の上限値	h max	文献*1に基づき設定	0.050	動的変形特性に基づき設定	0.104
強度特性	粘着力	С	設計一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	500	一軸圧縮強度 q "と粘着力 c との 関係に基づき設定	2512

注記*1:改訂版 建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法-(日本建築センター, 平成14年11月)


*2: 液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所,平成9年6月)

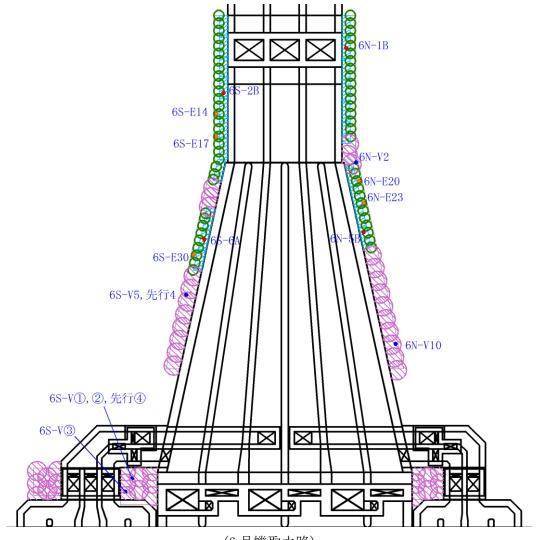
### 5.3.3 6 • 7 号機取水路

 $6\cdot7$  号機取水路における新設地盤改良体の事後調査位置図を図 5-6 に、試験結果を表 5-14~表 5-16 及び図 5-7、図 5-8 に、妥当性確認結果を表 5-17 に、試験結果を元 に既設地盤改良体と同等の整理で物性値を定めた値を表 5-18~表 5-20 に示す。

追加調査の結果, 追加調査による強度については設計値よりも上回る結果となった。

よって 6・7 号機取水路における新設地盤改良体については,強度の観点で現在の設定が保守的であり,新設地盤改良体の解析用物性値の設定は妥当である。




地盤改良体凡例

7	鍾 別	凡例	調査位置
	置換		•
新設 地盤改良体	高圧噴射(砂質土)		•
. 3	機械攪拌		•

注:青字 は孔名を示す。

図 5-6 6・7 号機取水路における新設地盤改良体の調査位置図(1/2)

(参考) 6-68 300



(6 号機取水路)

# 地盤改良体凡例

ž	種 別	凡例	調査位置
	置換		•
新設 地盤改良体	高圧噴射(砂質土)		•
- 5	機械攪拌	Ó	•

注:青字 は孔名を示す。

図 5-6 6・7 号機取水路における新設地盤改良体の調査位置図(2/2)

(参考) 6-69 301

表 5-14 6・7 号機取水路/置換における新設地盤改良体の試験結果

	湿剂	関密度	間	隙率	一軸月	王縮強度	P波	皮速度	S波	皮速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	<b>計制</b> 粉		試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	此个十数	$(g/cm^3)$	叶竹奴	九別十均	此个好	$(kN/m^2)$	*	(m/s)	*	(m/s)	此作数	11.加干均
6S-2B	-	-	-	-	9	3470	-	-	-	-	-	
6N-5B	_	_	_	_	9	4094	_	_	_	_	_	
7S-5B	_	_	-	_	9	4312	-	_	-	-	-	
7N-3B	-	_	-	-	9	4743	-	_	-	-	-	_
6N-1B	3	1. 795	-	_	3	3557	-	_	-	_	-	
6S-6A	3	1.784	-	_	3	4397	-	_	-	_	-	
7N-2A	3	1.824	-	_	3	7587	-	-	-	-	-	
7S-8B	3	1.785	-	-	3	5153	-	-	-	-	-	
平均值	12	1.80	-	-	48	4410	_	_	-	_	_	
標準偏差	0	. 018		-	1	1069		_	-			
変動係数	0	. 010		-	0	. 243		-		-		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 5-15 6・7号機取水路/機械攪拌における新設地盤改良体の試験結果

	湿剂	閏密度	間	隙率	一軸戶	E縮強度	P波	<b>b</b> 速度	S波	逐速度	h∼	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武州数	$(g/cm^3)$	武什奴	化加平均	武什奴	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什奴	化加平均
6S-E17	_	-	-	-	9	1938	-	-	-	-	-	
6N-E23	-	-	-	-	9	2523	-	-	-	-	-	
7S-EC7	-	-	-	-	9	3130	-	-	-	-	-	
7S-EB43	-	-	-	-	9	2523	-	-	-	-	-	
7N-E33	-	-	-	-	9	3377	-	-	-	-	-	図5-7を
6N-E20	5	1.892	-	-	3	6150	1	2740	1	986	1	参照の
6S-E14	5	1. 937	-	_	3	4437	1	2420	1	877	1	こと
6S-E30	5	1.912	-	_	3	4630	1	2440	1	850	1	
7N-E37	5	1.907	-	_	3	4473	1	2060	1	720	1	
7S-EA13	5	1. 906	-	-	3	4210	1	2340	1	885	1	
7S-EC35	5	1.864	-	-	3	7677	1	2610	1	1290	1	
平均值	30	1.90	-	-	63	3219	6	2435	6	935	6	
標準偏差	偏差 0.027 -		1722		234		194					
変動係数	0.	. 014		-	0.	. 502	0.	. 096	0.	. 208		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

表 5-16 6・7 号機取水路/高圧噴射(砂質土)における新設地盤改良体の試験結果

	湿剂	閏密度	間	隙率	一軸原	王縮強度	P波	皮速度	S波	逐速度	h~	γ 関係
孔名	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均	試料数	孔別平均
	武什致	$(g/cm^3)$	武什致	11. 加平均	武什奴	$(kN/m^2)$	*	(m/s)	*	(m/s)	武什奴	化加平均
6S-V5, 先行4	-	_	_	_	9	3441	-	-	-	_	_	
6S-V①, ②, 先行④	-	-	-	_	9	4072	-	-	-	_	-	
7S-V①, ②, 先行④	_	_	_	_	9	3035	_	_	-	_	_	
7N-Vt2,4	_	_	_	_	9	3474	_	_	_	_	_	図5-8を
6N-V2	5	1.758	_	_	3	5620	1	2530	1	1190	1	参照の
6N-V10	5	1.626	_	_	3	3483	1	2050	1	871	1	こと
6S-V3	5	1.649	_	_	3	6557	1	2380	1	1080	1	٦
7N-V①	5	1.610	-	_	3	3230	1	2110	1	781	1	
7S-V1	5	1. 738	-	_	3	3947	1	1780	1	824	1	
7S-V6	5	1.751	-	_	3	5657	1	2680	1	1260	1	
平均值	30	1.69	_	1	54	3920	6	2255	6	1001	6	
標準偏差	0.	. 160		_	2	049		335		203		
変動係数		. 095		-		. 523	0	. 149	0.	. 203		

注記*: PS検層の測定区間長1mを一つの試料数と見なす。

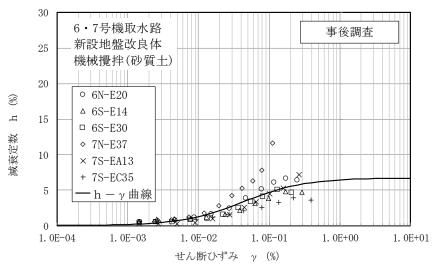



図 5-7 減衰定数のひずみ依存特性 (6・7号機取水路/機械攪拌)

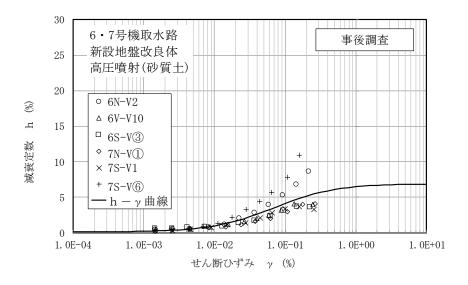



図 5-8 減衰定数のひずみ依存特性 (6・7 号機取水路/高圧噴射(砂質土))

表 5-17 妥当性確認結果(強度)

		設計値	事後調査結果				
対象施設	種別	q _{u d}	平均值	標準偏差	$_{ m q}$ $_{ m u}$ $_{ m f}$ $ _{ m q}$ $_{ m u}$		
			q _{u f} (kN/m²)	$\sigma_{\mathrm{q}\mathrm{u}}$ $(\mathrm{kN/m}^2)$	$(kN/m^2)$		
	置換	1000	4410	1069	3341		
6・7号機 取水路	機械攪拌(砂質土)	1000	3219	1722	1497		
	高圧噴射(砂質土)	1000	3920	2049	1871		

表 5-18 設計値と事後調査結果に基づく設計値との対比(置換)

	名 称		新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別		高圧噴射,機械攪拌,置換     置換    高圧噴		高圧噴射,機械攪拌,置換,改良盛土	置換
理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.85	物理試験	1.80
特性	間隙率	n	既設地盤改良体の物理試験	0.48	物理試験	-
	動せん断弾性係数	G _{ma}	設計S波速度,密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	$2.40 \times 10^5$	PS検層によるS波速度、密度に基づき設定	_
変形	基準平均有効拘束圧	$\sigma_{\rm ma}$ ,	慣用値 ^{*2}	98. 0	慣用値* ²	98. 0
特性	ポアソン比	ν	慣用値* ² (PS検層) ^{*3}	0.33	慣用値 ^{*2} (PS検層) ^{*3}	0.33
	減衰定数の上限値	h max	文献*1に基づき設定	0.050	動的変形特性に基づき設定	-
強度特性	粘着力	с	設計一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	500	一軸圧縮強度 q "と粘着力 c との 関係に基づき設定	2205

注記*1: 改訂版 建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法-(日本建築センター, 平成14年11月) *2: 液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所, 平成9年6月)

*3:括弧内の数字は、地下水位以浅の根拠を表す。

表 5-19 設計値と事後調査結果に基づく設計値との対比(機械攪拌(砂質土))

	名 称		新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別		高圧噴射,機械攪拌,置換	機械攪拌 (砂質土)	高圧噴射,機械攪拌,置換,改良盛土	機械攪拌 (砂質土)
理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.94	物理試験	1.90
特性	間隙率	n	既設地盤改良体の物理試験	0.49	物理試験	_
	動せん断弾性係数	$G_{\mathrm{m}\mathrm{a}}$	設計S波速度,密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	$2.51 \times 10^5$	PS検層によるS波速度、密度に基づき設定	$1.66 \times 10^6$
変形	基準平均有効拘束圧	$\sigma_{\rm ma}$ ,	慣用値 ^{*2}	98. 0	慣用値* ²	98. 0
特性	ポアソン比	ν	慣用値* ² (PS検層)* ³	0.33	慣用値 ^{*2} (PS検層) ^{*3}	0.33
	減衰定数の上限値	$h_{max}$	文献*1に基づき設定	0.050	動的変形特性に基づき設定	0.067
強度特性	粘着力	С	設計一軸圧縮強度quと粘着力cとの 関係に基づき設定	500	一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	1610

注記*1:改訂版 建築物のための改良地盤の設計及び品質管理指針-セメント系固化材を用いた深層・浅層混合処理工法-(日本建築センター,平成14年11月)

*2:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所,平成9年6月) *3:括弧内の数字は,地下水位以浅の根拠を表す。

表 5-20 設計値と事後調査結果に基づく設計値との対比(高圧噴射(砂質土))

	名 称		新設地盤改良体 (セメント改良)	新設地盤改良体の 物性設定方針 に基づく値	既設地盤改良体 (セメント改良)	事後調査結果に 基づき 設定した値
	種別	種別 高圧噴射,機械攪拌,置換		高圧噴射 (砂質土)	高圧噴射,機械攪拌,置換,改良盛土	高圧噴射 (砂質土)
理	密度	ρ	[高圧噴射,機械攪拌]改良対象地盤の物理試験 [置換] 既設地盤改良体(置換)の物理試験	1.94	物理試験	1.69
特性	間隙率	n	既設地盤改良体の物理試験	0.49	物理試験	-
	動せん断弾性係数	G _{ma}	設計S波速度、密度に基づき設定 設計S波速度の指定が無い場合は文献*1より推定	6. 98×10 ⁵	PS検層によるS波速度、密度に基づき設定	$1.69 \times 10^{6}$
形	基準平均有効拘束圧	$\sigma_{\rm ma}$	慣用値* ²	98. 0	慣用値* ²	98. 0
特性	ポアソン比	ν	慣用値 ^{≠2} (PS検層) ^{≠3}	0.33	慣用値 ^{*2} (PS検層) ^{*3}	0.33
	減衰定数の上限値	$h_{max}$	文献*1に基づき設定	0.050	動的変形特性に基づき設定	0.069
強度特性	粘着力	Ċ	設計一軸圧縮強度 q u と粘着力 c との 関係に基づき設定	500	一軸圧縮強度 q 。と粘着力 c との 関係に基づき設定	1960

注記*1:改訂版 建築物のための改良地盤の設計及び品質管理指針―セメント系固化材を用いた深層・浅層混合処理工法― (日本建築センター、平成14年11月)

*2:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法 (港湾技研資料No.869) (運輸省港湾技術研究所、平成9年6月)

*3:括弧内の数字は、地下水位以浅の根拠を表す。

305

### 6. 地盤改良体におけるばらつきの考え方

### 6.1 既設地盤改良体(セメント改良)

既設地盤改良体(セメント改良)については、PS 検層による S 波速度  $V_s$  に基づき、初期せん断弾性係数  $G_0$  を設定する。

ばらつきを考慮した解析ケースにおいては、各既設地盤改良体の PS 検層の結果から、S 波速度  $V_s$ の標準偏差  $\sigma$  を求め、(式 10) より  $V_s$  のばらつきを考慮した初期せん断弾性係数  $G_{0(\pm 1\sigma)}$  を設定する。

$$G_{0 (\pm 1 \sigma)} = \rho \cdot (V_s \pm 1 \sigma)^2$$
 (式 10)

ここで,

ρ:質量密度

### 6.2 既設地盤改良体(土質安定処理土)

既設地盤改良体(土質安定処理土)については、地盤改良体の設計値(設計基準一軸圧縮強度  $q_{ud}$ )に基づき、 $G_0$ を設定する。

具体的には、図 6-1 に示すように文献(第 2 版 流動化処理土利用技術マニュアル,独立行政法人土木研究所,平成 19 年)の一軸圧縮強度  $q_u$  と変形係数 $E_{50}$  の関係から、 $E_{50}$  を推定し、(式 11)に基づき $G_0$  を設定する。

$$G_0 = \frac{E_{50}}{2 (1 + v)} \tag{\ddagger 11}$$

ここで,

ν:ポアソン比

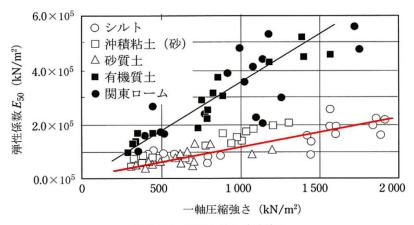



図-2.12 弾性係数の試験結果

図 6-1 流動化処理土の変形係数の推定

(引用:第2版 流動化処理土利用技術マニュアル,独立行政法人土木研究所編,平成19年 に加筆)

実施工の地盤改良体は、設計値を上回るように施工される。そのため、ばらつきを考慮した解析ケースにおいても、設計値に基づき下限値相当の $G_0$ を設定することで、保守的な構造物評価を行う。

また、機器・配管系を間接支持する構造物については、応答加速度及び応答変位に対する影響評価を別途実施する。

## 6.3 新設地盤改良体(セメント改良)

新設地盤改良体(セメント改良)については、地盤改良体の設計値(設計 S 波速度  $V_{Sd}$ ) に基づき、 $G_0$  を設定する。

具体的には、(式 12) より  $V_{Sd}$  から、 $G_0$  を設定する。

$$G_0 = \rho \cdot V_{sd}^2 \tag{\ddagger 12}$$

実施工の地盤改良体は、設計値を上回るように施工される。そのため、ばらつきを考慮した解析ケースにおいても、設計値に基づき下限値相当の $G_0$ を設定することで、保守的な構造物評価を行う。

また、機器・配管系を間接支持する構造物については、応答加速度及び応答変位に対する影響評価を別途実施する。

## 6.4 新設地盤改良体 (無筋コンクリート)

新設地盤改良体 (無筋コンクリート) については、地盤改良体の設計値 (設計基準強度  $f'_{ck}$ ) に基づき、 $G_0$ を設定する。

具体的には、表 6-1 に示すように文献(コンクリート標準示方書)のコンクリートの  $f'_{ck}$  と  $E_c$  の関係から、(式 13) に基づき  $G_0$  を設定する。

$$G_0 = \frac{E}{2(1+v)}$$
 (式 13)

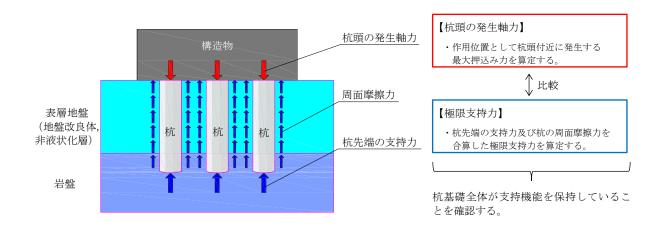
表 6-1 コンクリートのヤング係数

$f'_{ck}$ (N/mm ² )			24	30	40	50	60	70	80
E (1/N/mm²)	普通コンクリート	22	25	28	31	33	35	37	38
$E_c$ (kN/mm ² )	軽量骨材コンクリート*	13	15	16	19	_	1	1	-

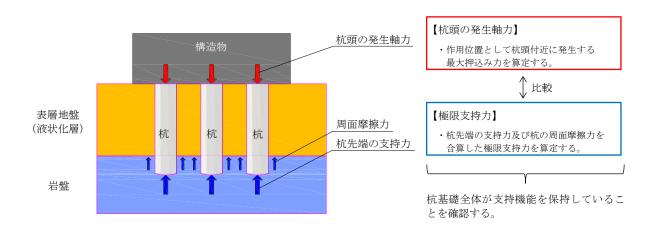
### * 骨材を全部軽量骨材とした場合

(引用:コンクリート標準示方書 構造性能照査編,社団法人土木学会,2002年)

実施工の地盤改良体は、設計値を上回るように施工される。そのため、ばらつきを考慮した解析ケースにおいても、設計値に基づき下限値相当の $G_0$ を設定することで、保守的な構造物評価を行う。


なお、新設地盤改良体(無筋コンクリート)は、取水路及び6号機取水路の地震応答解析に おいて設定される解析用物性値のため、機器・配管系を間接支持する構造物の地震応答解析で は用いない。

## (参考資料7) 杭基礎の支持力評価方法に関する補足


1. 押込み力に対する杭基礎の支持力評価方法 杭基礎の押込み力に対する支持力は杭頭の発生軸力により評価を行う。

押込み力に対する支持力評価においては, 杭周面に有効応力解析により液状化すると評価 された地盤(以下, 液状化層という)が存在する場合は, 杭周面摩擦力を支持力として考慮 せず, 支持力評価を行う。ただし, 杭周面に地盤改良体, 非液状化層及び岩盤が存在する場 合は, その杭周面摩擦力を支持力として考慮する。

図1-1に、押込み力に対する支持力評価の概要を示す。

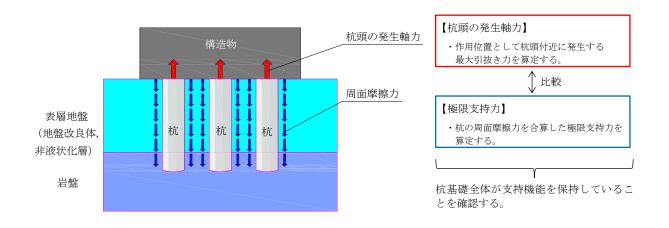


(a) 押込み力に対し杭周面摩擦力を支持力として考慮する場合

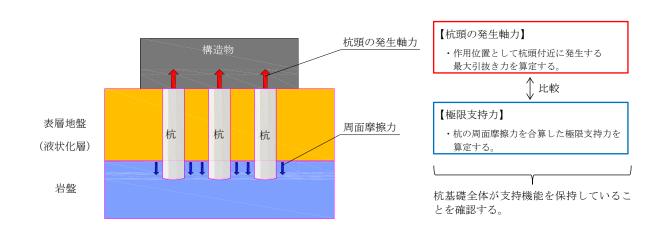


(b) 押込み力に対し表層地盤の杭周面摩擦力を支持力として考慮しない場合

図 1-1 押込み力に対する杭基礎の支持力評価


(参考) 7-1 308

2. 引抜き力に対する杭基礎の支持力評価方法


杭基礎の引抜き力に対する支持力は、杭頭の発生軸力により支持力評価を行う。

引抜き力に対する支持力評価においては、杭周面に液状化層が存在する場合は杭周面摩擦力を支持力として考慮せず、支持力評価を行う。ただし、杭周面に地盤改良体、非液状化層及び岩盤が存在する場合は、その杭周面摩擦力を支持力として考慮する。

図 2-1 に引抜き力に対する支持力評価の概要を示す。



(a) 引抜き力に対し杭周面摩擦力を支持力として考慮する場合

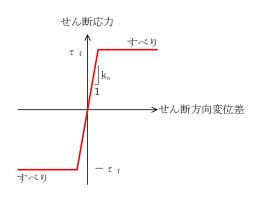


(b) 引抜き力に対し表層地盤の杭周面摩擦力を支持力として考慮しない場合

図 2-1 引抜き力に対する杭基礎の支持力評価

(参考) 7-2 309

- 3. 有効応力解析における杭と地盤との境界条件について
  - 3.1 杭-地盤相互作用ばねの設定


地盤と杭の接合面に杭ー地盤相互作用ばねを設けることにより、地盤と杭の接合面に おける、地震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については、地盤と杭の接合面におけるせん断抵抗力以上のせん断荷重が発生した場合、せん断剛性をゼロとし、すべりを考慮する。図 3-1 に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは(式1)の Mohr-Coulomb 式により規定される。

 $au_{\rm f} = c + \sigma' an \phi$  (式 1) ここで、

τ f : せん断強度c : 粘着力φ : 内部摩擦角



杭-地盤相互作用ばね(杭軸方向)の力学的特性 図 3-1 杭-地盤相互作用ばねの考え方

杭-地盤相互作用ばねの杭軸方向のばね定数は、数値解析上不安定な挙動を起こさない程度に十分大きい値として、表 3-1 のとおり設定する。

また, 杭-地盤相互作用ばねの杭軸直交方向のばね定数については, 杭径及び杭間隔より設定される*。

注記*: FLIP 研究会 14年間の検討成果のまとめ「理論編」

表 3-1 杭-地盤相互作用ばねのばね定数

	せん断剛性 ks
	$(kN/m^3)$
杭軸方向	$1.0 \times 10^{6}$

(参考) 7-3 310

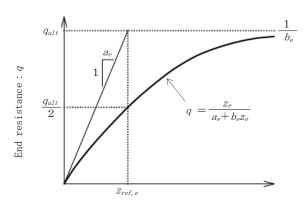
### 3.2 杭先端ばねの設定

杭先端と地盤間に Hirayama* (1990) による杭先端抵抗と杭先端変位の双曲線型の関係を杭軸方向のばねの抵抗力と変位差の関係に置き換えたばねを設けることにより、杭先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り扱うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力をゼロとし、剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差の関係は、(式2)および図 3-2 に示す双曲線型の式で設定される。

 $q = z_e / (a_e + b_e \cdot z_e)$  (式 2)

 q
 : 杭先端抵抗


 z e
 : 杭先端変位

a e : 基準変位を杭先端における極限支持力で除した値(=0.25De/qult)

b_e : 杭先端における極限支持力の逆数 (=1/q_{ult})

D_e : 杭径

qult : 杭先端における極限支持力



Pile tip displacement :  $z_e$ 

図 3-2 杭先端ばねの杭軸方向のばねの抵抗力と変位差の関係 (Hirayama (1990))

注記* : Hirayama, H. (1990), "Load-settlement analysis for bored piles using hyperbolic transfer functions", Soils and Foundations, 30(1), 55-64.

## 【杭ー地盤相互作用ばねの杭軸直交方向のばね定数について】

本項では、FLIP 研究会 14 年間の検討成果のまとめ「理論編」に記載されている杭ー地盤 相互作用ばねの杭軸直交方向のばね定数の考え方を示すとともに、柏崎刈羽原子力発電所の 構造物への適用性について説明する。

- 1. 杭-地盤相互作用ばねについて
  - 1.1 杭-地盤相互作用ばねの概要

杭ー地盤相互作用ばねのばね定数は、杭周辺地盤のせん断応力ーせん断ひずみ関係に基 づく杭と地盤の相対変位及び杭と地盤相互のばね力を以下のように設定するものである。

①杭周辺地盤のせん断ひずみyより,(式3)を用いて,杭と地盤の相対変位uを求める。

$$\mathbf{u} = \mathbf{D} \times \boldsymbol{\beta}_{p} \times \boldsymbol{\gamma} \tag{\vec{x} 3}$$

ここで,

D : 杭径

:地盤のせん断ひずみから杭と地盤の相対変位を求めるための係数 βn

②杭周辺地盤のせん断応力τより,(式4)を用いて杭と地盤相互のばね力Fを求める。

$$F = L \times D \times \alpha_p \times \tau \tag{式 4}$$

ここで,

L : ばね鉛直方向支配長

: 地盤のせん断応力から杭と地盤相互のばね力を求めるための係数  $\alpha$  p

# a) 平面図 b) 立面図 2次元地盤モデル 杭-地盤相互作用ばね ┛ 杭-地盤相互作用ばね 杭 2次元地盤モデル

図 4-11-19 杭-地盤相互作用ばねによる2次元一体解析の杭モデルと 地盤モデルの連結方法 (模式図)

※ I1 は杭-地盤相互作用ばね要素の杭側節点, I2 は地盤側節点, Lu はばねの上側支配長 (隣接する上側のばねまでの半分の長さ), LI はばねの下側支配長を表す.

> 注記*: FLIP 研究会 14 年間の検討成果のまとめ「理論編」より抜粋 図3-3 杭-地盤相互作用ばねのモデル化イメージ

> > (参考) 7-5

312

## 1.2 係数 $\beta$ _p及び係数 $\alpha$ _pの設定について

杭ー地盤相互作用ばねの設定に係る係数 $\beta$ ,及び $\alpha$ ,について、その設定方法を記載する。

β。: 地盤のせん断ひずみから杭と地盤の相対変位を求めるための係数

α_p: 地盤のせん断応力から杭と地盤相互のばね力を求めるための係数

杭一地盤系の3次元的挙動を分析するため,杭1本分の水平断面と加振直交方向に隣接する杭との中間地点までの地盤からなる単位厚さの水平断面モデルによる解析を実施し、地盤ばねの荷重一変位関係としてモデル化している。図3-4に解析モデルの概念を、図3-5に杭間隔5Dの場合の水平断面モデルを示す。

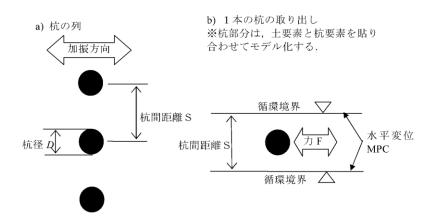
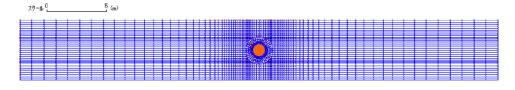
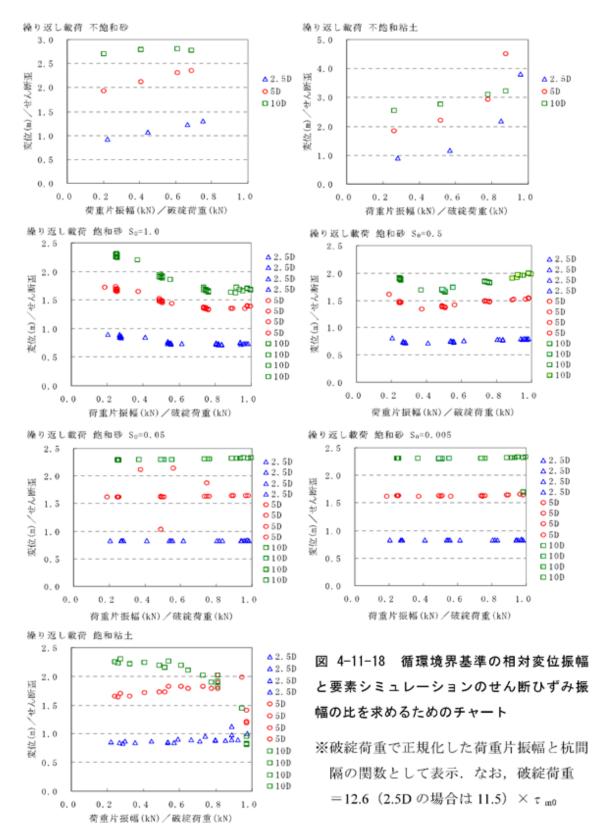




図 4-11-1 杭荷重ー相対変位関係を調べるための水平断面モデル1)


注記 * FLIP 研究会 14 年間の検討成果のまとめ「理論編」より抜粋 図 3-4 水平断面モデルの概念

## b) 杭間隔 5D



注記 * FLIP 研究会 14 年間の検討成果のまとめ「理論編」より抜粋 図 3-5 水平断面モデル (杭間隔 5D)

上記の解析モデルを用いて、複数の杭間隔及び地盤条件に対して圧密解析と杭の水平載荷解析を実施し、地盤ばねの荷重-変位関係を求めている。杭の水平載荷解析により求めた各係数を図 3-6 及び図 3-7 に掲載する。



注記*1:グラフの Y 軸である"変位(m)/せん断歪"が係数  $\beta$ 。に相当する。

*2:FLIP 研究会 14年間の検討成果のまとめ「理論編」より抜粋

図 3-6 杭の水平載荷解析により求めた係数βρの例

(参考) 7-7 314



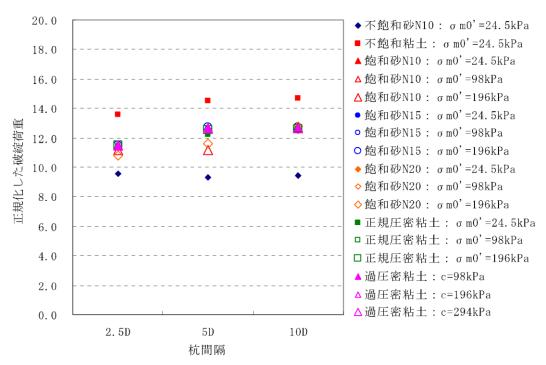



図 4-11-9 単調載荷時の(破綻荷重/初期せん断強度 τ ๓)の分布

注記*1: グラフの Y 軸である "正規化した破綻荷重" が係数  $\alpha$  に相当する。

*2: FLIP 研究会 14年間の検討成果のまとめ「理論編」より抜粋

図 3-7 杭の水平載荷解析により求めた係数  $\alpha_p$ の例

- 2. 杭-地盤相互作用ばねの柏崎刈羽原子力発電所への適用性について
  - 2.1 水平載荷解析における地盤条件について

杭-地盤相互作用ばねの設定に係る水平載荷解析にて検討対象とした地盤条件を表 3 -2 に示す。柏崎刈羽原子力発電所の原地盤に対応する砂層(飽和状態)や,過圧密粘土 (飽和状態)が対象として含まれていることが分かる。

表 3-2 水平載荷解析における検討対象地盤

表 4-11-1 検討対象とする土質および土の状態の一覧1)

間隙水	土質	地盤物性		初期 有効東 圧 σ _m ,	過剰間隙 水圧比
		等価	せん断剛性および	(kPa)	(%)
		N 値 (N ₆₅ )	せん断強度		
地下水以浅	砂	10 相当	等価 N 値より設定	24.5	_
(不飽和状態)	正規圧密粘土	_	排水正規圧密強度 ø = 30°	24.5	_
地下水以下	砂	10 相当	等価N値より設定	24.5	0, 50, 95, 99.5
(飽和状態)				98.0	0, 50, 95, 99.5
				196.0	0, 50, 95, 99.5
		15 相当	等価 N 値より設定		0, 50, 95, 99.5
					0, 50, 95, 99.5
					0, 50, 95, 99.5
		20 相当	等価 N 値より設定		0, 50, 95, 99.5
					0, 50, 95, 99.5
				196.0	0, 50, 95, 99.5
	正規圧密粘土	_	排水正規圧密強度 ø =30°	24.5	_
				98.0	_
				196.0	
	過圧密粘土	_	粘着力 c (小)	196.0	
			粘着力 c (中)	196.0	_
			粘着力 c (大)	196.0	_

(飽和砂及び砂礫層) 新期砂層,沖積層上部(砂質),沖積層下部,A3s層,A2s層,A2g層(砂質),A1g層

沖積層上部 (シルト質), A3c 層, A3al 層, A2c 層, A2al 層, A2g層(シルト質), A1c 層

316

(飽和粘性土)

- ※1 等価 N 値 (N₆₅) は,有効上載圧が 65kPa の場合に換算した N 値.
- %2 初期有効拘束圧 ( $\sigma_{m0}$ ) は,土の想定深度に応じて設定したもので,圧密解析では,この欄で指定の拘束圧で地盤を等方圧密した.
- ※3 地下水位以下の砂地盤の場合,等方圧密後,過剰間隙水圧比欄が 0%,50%,95%,99.5% に応じて液状化フロントパラメータ  $S_0$ をそれぞれ 1.0,0.5,0.05,0.005 に設定し,過剰間隙水圧を所定の値まで上昇させ,その分,有効応力を減じた.この状態から始めて, $S_0$ の値を保ったまま,杭への水平載荷解析を行った.

注記*: FLIP 研究会 14 年間の検討成果のまとめ「理論編」に一部加筆

## 2.2 水平載荷解析における杭間隔についての検討

杭の水平載荷解析では杭間隔 2.5D~10Dの範囲を検討対象としている。これに対して、 有効応力解析による耐震評価を実施する柏崎刈羽原子力発電所の杭基礎構造物について、 その平均杭間隔を表 3-3に示す。

柏崎刈羽原子力発電所の杭基礎構造物の平均杭間隔は約2.5D~約5Dであり、水平載荷解析の検討範囲内である。

表 3-3 柏崎刈羽原子力発電所の杭基礎構造物における平均杭間隔

<b>光</b> 凯豆八	+br≥n	平均杭間隔	
施設区分	施設名称	(断面奥行方向)	
	7号機 軽油タンク基礎	NS 方向	3. 1 D
		EW 方向	2.8D
	7号機 燃料配管系配管ダクト	NS 方向	5. 1 D
屋外重要十木構造物		EW 方向	2.8D
<b>产</b> 外里安工小傅坦彻	第一ガスタービン発電機基礎	NS 方向	2.5D
		EW 方向	2.5D
	第一ガスタービン発電機用燃料タンク基礎	NS 方向	3. 0 D
		EW 方向	3. 1 D

注: Dは杭径を表す。

## (参考資料8) 地質区分の詳細について

### 1. 概要

本項では,工事計画認可申請における地質区分の考え方,地質区分の細分化の詳細,設置変更 許可申請段階における地質学的な地質区分と解析用地質区分の関係について述べる。

# 2. 工事計画認可申請における地質区分

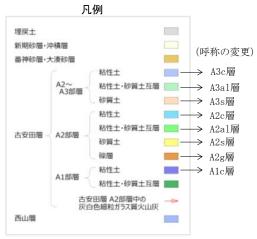
工事計画認可申請における地質区分は,表 2-1 に示す設置変更許可申請段階で示した地質層 序表に基づき設定することを基本とする。

工事計画認可申請では,設置変更許可申請以降に実施した追加の地質調査も踏まえ,各地質区分の粒度分布,堆積環境及び分布範囲を踏まえ,地質学的観点及び工学的観点から検討を行い,必要に応じて地層区分を細分化する。

	時 代		地層名		主な層相・岩質	**1 テフラ・放射年代	
	完新世		新期砂層·沖積層		灰白色~茶褐色の細~中粒砂,シルト層を挟在 一部は腐植質	← 腐植(9,910±30年前)	
		後期	番神砂層		灰白色~赤褐色の中~粗粒砂		
		1万州	大湊砂層		褐色〜黄褐色の中〜粗粒砂, シルトの薄層を含む		
第		中期			最上部は砂 粘土〜シルト,砂を多く挟む	→ 刈羽テフラ(約20万年前	
四四	更		* ² 古 安	A3部層	粘土〜シルト 縞状粘土,有機物,砂を伴う,貝化石を含む		
紀	新世		田 層	A ₂ 部層	粘土〜シルト 砂,厚い砂礫,有機物を挟む	← Ata-Th(約24万年前)	
				A ₁ 部層	粘土〜シルト 砂,砂礫を挟む	← Kkt (約33~34万年前)	
		前期	灰爪層		凝灰質泥岩,凝灰質砂岩,凝灰岩	→ Iz(約150万年前)	
				N₃部層	砂質泥岩 砂岩,凝灰岩,ノジュールを挟む 貝化石を含む	D (Whose T # 1/4)	
	鮮新世中	後期	西 山 層 ※期	N2部層	シルト質泥岩 縞状泥岩,凝灰岩,ノジュールを多く挟む	<ul><li>← Fup (約220万年前)</li><li>← Tsp (約230万年前)</li><li>← Az (約240万年前)</li></ul>	
新				Nı部層	シルト質〜粘土質泥岩 砂岩,凝灰岩,ノジュールを挟む 珪質海綿化石を含む	<ul><li>Nt-17 (340±20万年前)</li><li>Nt-7 (350±20万年前)</li></ul>	
第三		前期	椎谷層		砂岩、砂岩・泥岩互層、細礫岩等を挟む		
紀	新世	後期 中期	寺 泊 層		黒色泥岩、砂岩・泥岩互層		

表 2-1 設置変更許可申請書の地質層序表

※1 テフラの名称・年代は、岸ほか (1996) などによる。 ※2 安田層下部層のMIS10~MIS7とMIS6の境界付近の堆積物に対する仮称。


**>>>>** 不整合

なお、設置変更許可申請段階の地質区分のうち、古安田層については、表 2-2 に示すとおり、層相毎に「粘性土」、「粘性土・砂質土互層」、「砂質土」、「礫層」と区分していた。工事計画認可申請においては、簡便のため、それぞれの層相の名称を表 2-2 に示す対応とする。

時代		設置変更許可申請段階 における地質区分			工事計画認可申請 における呼称	層相	
第	更	古		粘性土	A3c 層	シルト	
四	新	安	A ₃ 部層	粘性土・砂質土互層	A3al 層	砂・シルト互層	
紀	世	田		砂質土	A3s 層	砂	
		層		粘性土	A2c 層	シルト	
			A →77 5元:	粘性土·砂質土互層	A2al 層	砂・シルト互層	
			$A_2$ 部層	砂質土	A2s 層	砂	
				礫層	A2g 層	砂礫	
			A →77 55.	粉性土 料性土	A1c 層	シルト	
			A ₁ 部層	礫層*	Alg層*	シルト質砂礫~砂礫*	

表 2-2 工事計画認可申請における古安田層の呼称

注記*: A1 部層の礫層については、設置変更許可申請段階の地質断面図には出現していない。



注: 敷地南側に出現するA1部層の礫層は、A1g層と呼称

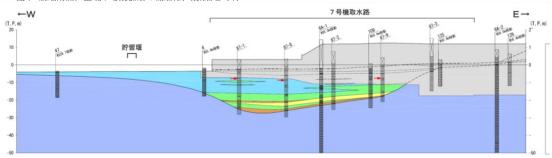



図 2-1 設置変更許可申請段階における地質断面図と地質区分の呼称

(発電用原子炉設置変更許可申請(原管発官25第192号)に係る審査資料の

第4条:地震による損傷の防止 別紙-11:液状化影響の検討方針について (耐震) より抜粋)

### 3. 地質区分の細分化の検討

### 3.1 敷地内地質調査による各地質区分の粒度分布

図 3-1 に、設置変更許可申請以降の調査も含めた物理試験調査孔の位置図を示す。図 3-2 に、細分化を行う前の設置変更許可申請段階の地質区分で整理した粒度分布を示す。

同図より、各地質区分のうち、古安田層の「A3 部層の粘性土層(A3c 層)」、「A2 部層の粘性土層(A2c 層)」及び「A1 部層の粘性土層(A1c 層)」は、すべての試料の細粒分含有率 Fc が 35%を超えており、シルトが主体的である。「A3 部層の粘性土・砂質土互層(A3al 層)」及び「A2 部層の粘性土・砂質土互層(A2al 層)」は、粘性土、砂質土の互層のため、粘性土主体で一部砂質土を含む。「A3 部層の砂質土層(A3s 層)」及び「A2 部層の砂質土層(A2s 層)」は、平均的な粒度分布は細粒分含有率 Fc が 35%以上であるものの、細粒分含有率 Fc が 35%を下回る砂質土を多く含むことを確認した。

上記に示した地質区分については、粒度分析の結果が地質学的な層相区分と整合しており、 工学的観点からも区分の妥当性を確認した。

一方,「埋戻土」,「新期砂層・沖積層」, 古安田層の「A2g 層」及び「A1g 層」については, 粒度分布の偏り,または,3.2に後述するように堆積環境に起因する性状の差異が認められる。 このため,これらの地質区分については,設置変更許可申請段階の地質区分から,地質学的観 点および工学的観点から,細分化を検討する。

ただし、敷地南側に出現する A1g 層については、図 3-3 に示すように分布範囲が対象施設 (第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎) から十分に離れており、耐震評価における影響は小さいと考えられる。このため、A1g 層については、細粒分含有率が多いものの、設計上の配慮として全体を礫層(液状化検討対象層)として扱う。

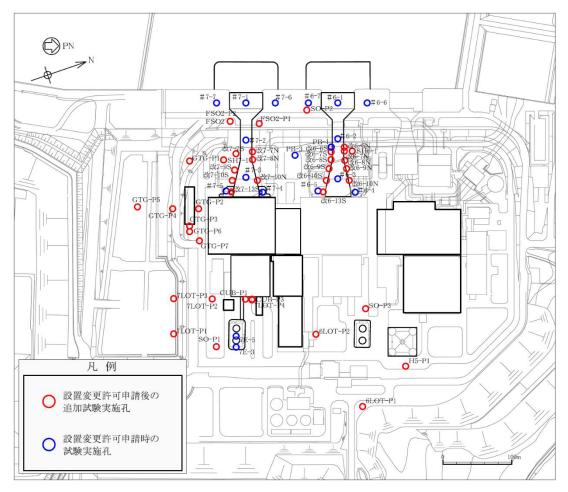
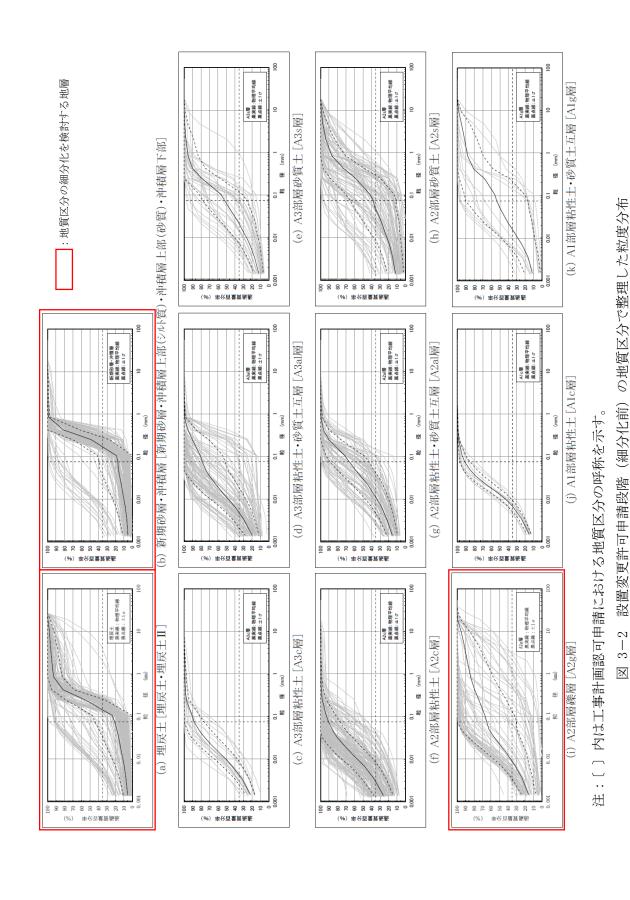




図 3-1 敷地内の物理試験調査孔位置図



(参考)8-5 322

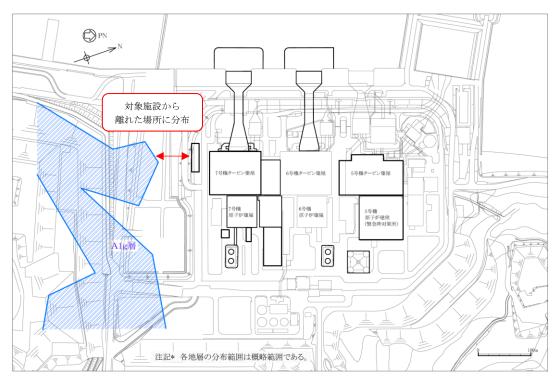



図 3-3 Alg層の出現範囲

## 3.2 地質区分の細分化

設置変更許可申請段階の地質区分のうち、「埋戻土」、「新期砂層・沖積層」及び古安田層の「A2 部層の礫層(A2g 層)」について、地質区分の細分化を検討する。

### 3.2.1 埋戻土

## (1) 分布範囲

埋戻土は、発電所建設時における敷地の掘削土を起源とする埋戻し材料であり、敷地全体に分布している。その多くが砂を主体とした性状であるが、6 号機軽油タンク基礎周辺の埋戻土は、西山層岩砕を起源とした埋戻し材料であり、シルトを主体としており、これを埋戻土 $\Pi$  として区分する。埋戻土及び埋戻土 $\Pi$  の概略分布を図 3-4 に示す。

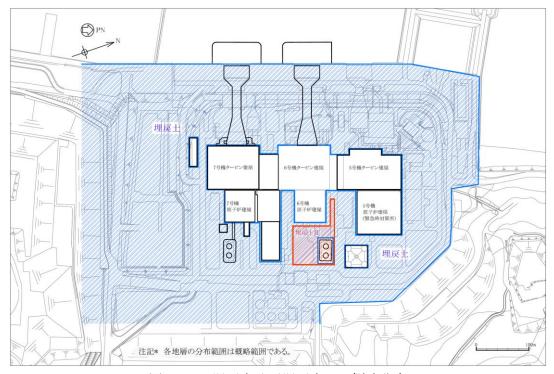



図 3-4 埋戻土及び埋戻土Ⅱの概略分布

## (2) 地質学的観点 (コア観察)

埋戻土と埋戻土 $\Pi$ のコア写真を図 3-5に示す。埋戻土は、砂を主体としており茶褐色を呈し、まれに礫やシルトを含む。一方、埋戻土 $\Pi$ は、シルト主体で灰白色を呈し、一部茶褐色を呈し砂を含む。色調や性状からも両者には明確な違いが認められる。



(a) 埋戻土のコア写真 (GTG-P2)



(b) 埋戻土Ⅱのコア写真 (SO-P3) 図 3-5 埋戻土・埋戻土Ⅱのコア写真

# (3) 工学的観点(粒度分析結果)

コア観察で性状の異なる 2 種の埋戻土の粒度分布を図 3-6 に示す。粒度分析の結果、埋戻土は砂質土を主体としているのに対し、埋戻土 $\Pi$  は粘性土を主体としていることが確認された。埋戻土の細粒分含有率は 15.5%、埋戻土 $\Pi$  は 90.6%である。これより、6 号機軽油タンク基礎周辺におけるシルトを主体とした埋戻土については、有効応力解析において適切な評価を行うため、地質区分を埋戻土 $\Pi$  として区分した。

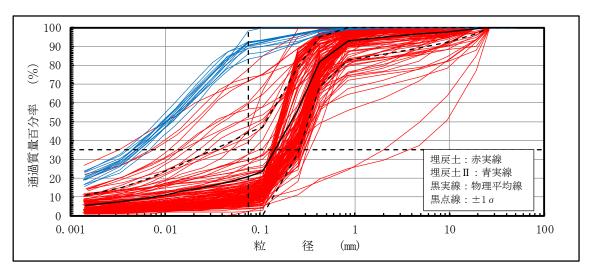
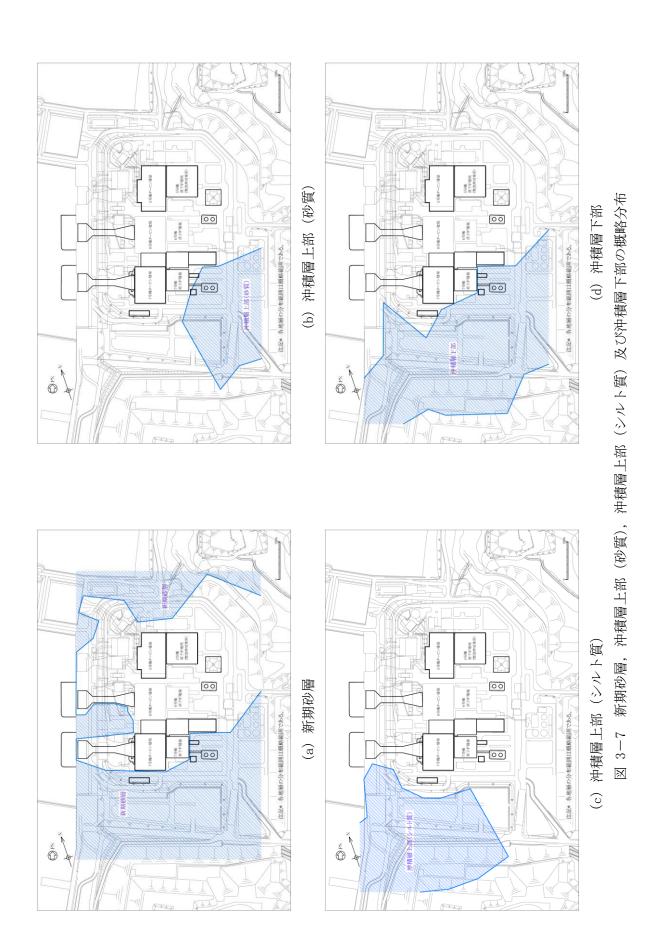



図 3-6 埋戻土と埋戻土Ⅱの粒度分布


# 3.2.2 新期砂層・沖積層

# (1) 分布範囲

新期砂層・沖積層は、敷地に広く分布する砂を主体とする地層であり、沖積層は主に敷 地南側に、新期砂層は沖積層や古安田層を覆って敷地全体に分布する。

地質学的観点から、下位より沖積層下部、沖積層上部、新期砂層に区分する。さらに、 沖積層上部については、砂主体の沖積層上部(砂質)とシルト主体の沖積層上部(シルト 質)に区分する。

新期砂層,沖積層上部(砂質),沖積層上部(シルト質)及び沖積層下部の概略分布を図 3-7 に示す。



(参考)8-10 327

# (2) 地質学的観点 (コア観察)

沖積層下部,沖積層上部(砂質),沖積層上部(シルト質)及び新期砂層のコア写真を図 3 -8 に示す。沖積層下部は砂を主体としており黄褐色を呈し、シルト分を若干含む。沖積層上部(砂質)は砂を主体としており黄褐色を呈し、シルトの薄層を挟む。沖積層上部(シルト質)はシルト~腐植質シルトを主体としており暗灰色を呈する。新期砂層は砂を主体としており暗灰~黒褐色を呈する。



(a) 沖積層下部 (SO-P1)



(b) 沖積層上部(砂質)(S0-P1)

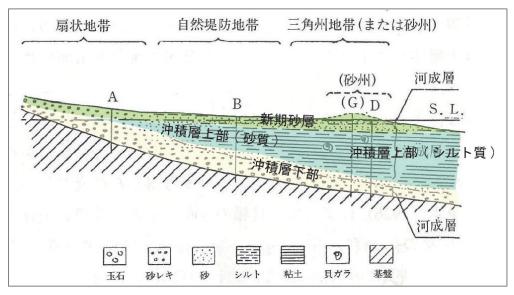


(c) 沖積層上部 (シルト質) (GTG-P5)



(d) 新期砂層のコア写真 (S0-P1)

図 3-8 沖積層下部,沖積層上部(砂質),沖積層上部(シルト質)及び新期砂層のコア写真


#### (3) 地質学的観点(堆積環境)

新期砂層・沖積層は、その堆積メカニズムから沖積層下部、沖積層上部及び新期砂層に細分化できる。図 3-9 に沖積層の模式断面図を示す。

沖積層下部は、砂を主体とする堆積物であり、河成堆積物と判断される。沖積層上部は、砂~シルトからなり、河成~湖沼成堆積物(淡水~汽水)と判断される。新期砂層は、沖積層上部及び沖積層下部を覆う砂を主体とする堆積物であり、主に砂丘堆積物と判断される。

このうち沖積層上部については、砂主体の地層とシルト主体の地層が認められる。沖積層上部(砂質)と沖積層上部(シルト質)の層相の違いは、図 3-9 に示すような同年代における堆積環境の違いによるものと考えられ、沖積層上部(砂質)は、相対的に内陸部に位置する軽油タンク付近に分布し、沖積層上部(シルト質)は海側に位置する第一ガスタービン発電機付近に分布する。

したがって沖積層上部については,有効応力解析を実施するにあたり,砂主体の地層を沖積層上部(砂質)とし,シルト主体の地層を沖積層上部(シルト質)に細分化した。



注:池田(1964)に一部加筆

図 3-9 沖積層の模式断面図

## (4) 工学的観点(粒度分析結果)

沖積層上部 (シルト質) と沖積層上部 (砂質) の粒度分布を図 3-10 に示す。粒度分析 の結果,沖積層上部 (シルト質) は粘性土を主体としているのに対し,沖積層上部 (砂質) は砂質土を主体としていることが確認された。沖積層上部 (シルト質) の細粒分含有率は 94.7%,沖積層上部 (砂質) は 31.0%である。

これより、沖積層上部については、有効応力解析において適切な評価を行うため、地質 区分を沖積層上部(シルト質)と沖積層上部(砂質)として区分した。

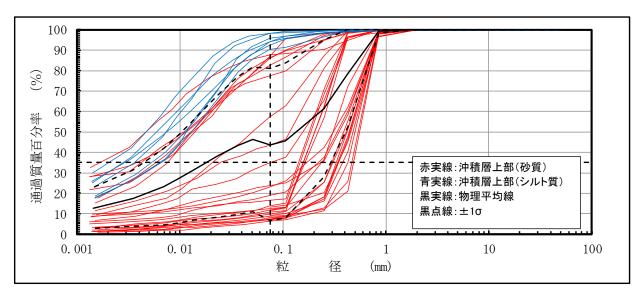
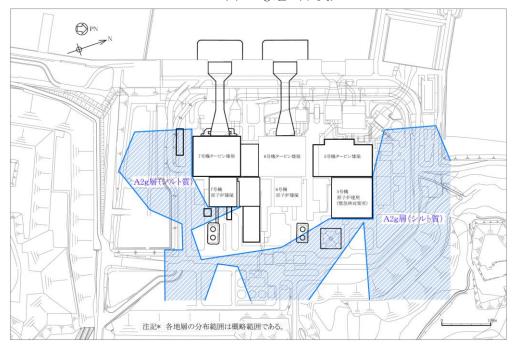




図 3-10 沖積層上部 (シルト質) と沖積層上部 (砂質) の粒度分布


#### 3.2.3 古安田層 A2 部層 礫層 (A2g 層)

## (1) 分布範囲

古安田層 A2 部層 礫層 (A2g 層) は、対象施設直下及び直近において西山層を覆う礫層である。地質学的観点から、A2g 層のうち、砂や砂礫を主体とする地層を A2g 層 (砂質)とし、シルトを主体とする地層を A2g 層 (シルト質)として区分する。分布範囲を図 3-11に示す。



(a) A2g層(砂質)



(b) A2g層 (シルト質)

図 3-11 A2g層(砂質)及びA2g層(シルト質)の概略分布

#### (2) 地質学的観点 (コア観察)

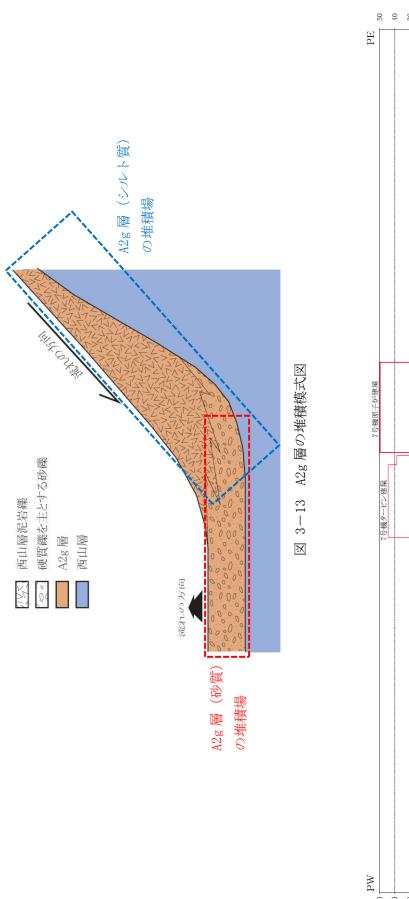
A2g 層(砂質), A2g 層(シルト質)のコア写真を図 3-12 に示す。A2g 層(砂質)は,灰色を呈し,砂や砂礫からなり礫は硬質礫を主体とする。一方,A2g 層(シルト質)は,オリーブ灰色を呈し,基質はシルトで硬質礫は少なく泥岩礫が多い。



(a) A2g層(砂質)のコア写真(FSO2-P2)



(b) A2g 層 (シルト質) (GTG-P6)図 3-12 A2g 層 (砂質) 及び A2g 層 (シルト質) のコア写真


#### (3) 地質学的観点(堆積環境)

A2g 層は, A2 部層の堆積サイクルにおいて砂礫を主体とする地層であるが, 一部に基盤岩の西山層が礫状~土砂状を呈し多く含むところが認められる。図 3-13に A2g 層の堆積模式図を示す。

A2g 層は、谷底部において川の流れで運搬された砂や砂礫を主体とするが、斜面部では西山層が崩れた泥岩礫やシルトを多く含むと考えられ、堆積環境により砂主体の堆積物とシルト主体の堆積物が認められる。

図 3-14 に示すように A2g 層 (砂質) は西山層上限面の谷を埋めて認められることが多く取水路付近に分布し、A2g 層 (シルト質) は西山層上限面の斜面に認められることが多く、第一ガスタービン発電機付近や軽油タンク付近に分布する。

したがって A2g 層については, 有効応力解析を実施するにあたり, 砂や砂礫を主体とする A2g 層(砂質) とシルトや泥岩礫を主体とする A2g 層(シルト質) に細分化した。



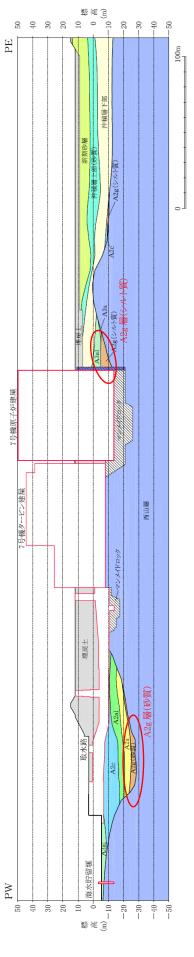



図 3-14 汀線直交 地質断面図(原子炉建屋炉心直交)(再掲)

## (4) 工学的観点(粒度分析結果)

A2g 層 (シルト質) と A2g 層 (砂質) の粒度分布を図 3-15 に示す。粒度分析の結果, A2g 層 (シルト質) は粘性土を主体としているのに対し,A2g 層 (砂質) は砂質土を主体としていることが確認された。A2g 層 (シルト質) の細粒分含有率は 77.6%,A2g 層 (砂質) は 26.5% である。

これより、A2g 層については、有効応力解析において適切な評価を行うため、地質区分を A2g 層(シルト質)と A2g 層(砂質)として区分した。

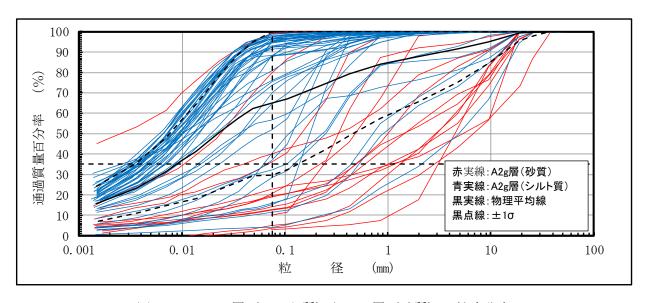



図 3-15 A2g層 (シルト質) と A2g層 (砂質) の粒度分布

# 3.2.4 まとめ

工事計画認可申請における地質区分は、設置変更許可申請段階の地質区分を基本とする。このうち、「埋戻土」、「新期砂層・沖積層」、「古安田層のA2部層の礫層」については、分布範囲の特徴及び粒度分布により、地質学的観点及び工学的観点から地層区分を細分化することが適切であると判断した。表 3-1に、工事計画認可申請における有効応力解析に用いる地質区分を示す。

表 3-1 工事計画認可申請における有効応力解析に用いる地質区分

時代		設置変更許可申請書 における地質区分		工事計画認可申請 における地質区分	主な層相	
_		埋戻土 粒度分析による細分化			埋戻土	砂
					埋戻土Ⅱ	シルト
		新期砂層・沖積層 <u>堆積環境</u> による細分化			新期砂層	砂
	完新世				沖積層上部(シルト質)	シルト
					沖積層上部(砂質)	砂
					沖積層下部	砂
		新 古安田層	A ₃ 部層	粘性土	A3c層	シルト
	更新世			粘性土・砂質土互層	A3a1層	砂・シルト互層
第四				砂質土	A3s層	砂
紀			Manager A ₂ 部層	粘性土	A2c層	シルト
				粘性土·砂質土互層	A2a1層	砂・シルト互層
				砂質土	A2s層	砂
				礫層	A2g層(シルト質)	シルト質砂礫
				堆積環境による細分化	A2g層(砂質)	砂礫
			A ₁ 部層 -	粘性土	A1c層	シルト
				礫層	A1g層	シルト質砂礫~砂礫

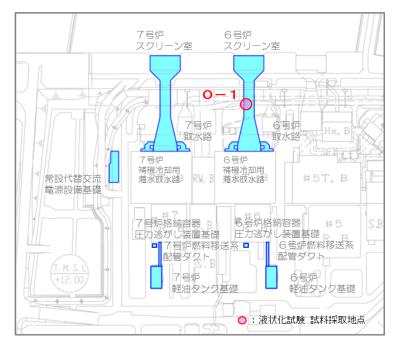
: 工事計画認可申請において細分化する地層

## 4. 設置変更許可段階で示した地質学的な地質区分と解析用地質区分の関係について

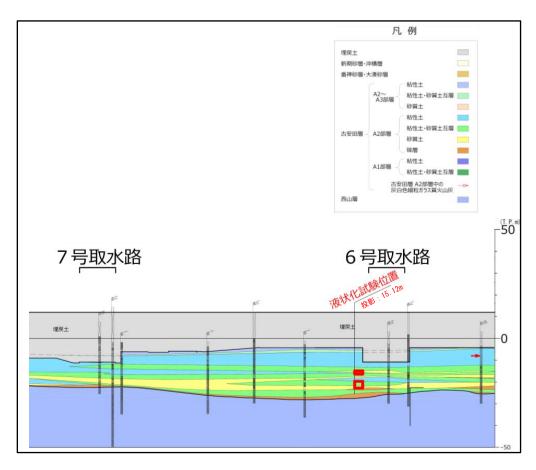
前述 2. で示した設置変更許可申請段階の地質区分は、地質層序表に基づき設定した地質区分 『地質学的な地質区分』である。一方、設置変更許可申請段階においては、この他、耐震評価に 用いる地質区分として『解析用地質区分』を設定していた。これは、既工認にて各地質区分の力 学的特性に応じて設定された地質区分である。設置変更許可申請段階における地質学的な地質 区分と解析用地質区分の関係を表 4-1 に示す。

工事計画認可申請では,有効応力解析を実施するにあたり,設置変更許可申請段階の地質層序表に基づく地質学的な地質区分を基本とする。

なお、設置変更許可申請段階で示した『大湊側:0-1 地点』(図 4-1 参照)における液状化強度試験は、解析用地質区分の洪積砂質土層(I)及び洪積砂質土層(II)にて採取した試料に対して実施されたものであり、工事計画認可申請における地質区分ではA2s 層に該当する。このため、大湊側:0-1 地点の液状化強度試験の結果は、工事計画認可申請におけるA2s 層の液状化強度試験の試験結果に反映している。


表 4-1 設置変更許可申請段階における解析用地質区分との対応関係

					大湊側:6,7号機 取水路				
時代		設置変更許可申請段階 における地質学的な地質区分			設置変更許可申請段階 における解析用地質区分	工事計画認可申請 における地質区分 (有効応力解析用)			
_		埋戻土			埋戻土	埋戻土			
		古安田層	A₃部層	粘性土	洪積粘性土層 (I) *1	A3c層			
第四紀				粘性土·砂質土互層		A3a1層			
				砂質土		A3s層			
	更新世		安田層	粘性土	洪積粘性土層(Ⅱ) 洪積粘性土層(Ⅲ)	A2c層			
				. 49 🗀	粘性土·砂質土互層	洪積粘性土層(Ⅱ) 洪積粘性土層(Ⅲ)	A2a1層		
				礫層	洪積砂質土層 (I) 洪積砂質土層 (Ⅱ)	A2g層(砂質)			
新第三紀	鮮新世	西山層	西山層		西山層	西山層			


注記*1:既工認では、 $A_3$ 部層は粘性土を主体としており、砂層は薄く、応答解析上無視し得ると判断し、

1層の粘性土層として扱っている。

*2:設置変更許可申請段階で示した大湊側,0-1地点の液状化強度試験を実施した地層



(a) 試料採取位置 平面図



(b) 試料採取位置 断面図 (O-1)

図 4-1 大湊側 液状化強度試験 試料採取地点位置図

(発電用原子炉設置変更許可申請 (原管発官 25 第 192 号) に係る審査資料の

第4条:地震による損傷の防止 別紙-11:液状化影響の検討方針について (耐震) より抜粋)

## (参考資料9) マンメイドロックの設計について

#### 1. 概要

原子炉建屋等の基礎岩盤の一部は、マンメイドロックで置き換えることにより、基礎岩盤の安定性の向上を図っている。このマンメイドロックについては、「西山層と同等以上の力学的特性と有する」材料として設計し、室内試験により物性値を設定している。

本項では、西山層と同等以上の力学的特性と有する置き換え材料として設計されたマンメイドロックの設計の考え方について記す。

## 2. マンメイドロックの設計について

置き換え材料としては、コンクリートが一般的であるが、柏崎刈羽原子力発電所の基礎岩盤は、 新第三紀の泥岩である西山層であり、工学的な分類では軟岩である。このため、柏崎刈羽地点で コンクリートを置き換え材料として使用した場合、強度は泥岩に比べて十分に大きいため問題と ならないが、

- ① 剛性については、コンクリートでは泥岩の数十倍も堅いため、周辺の岩盤よりも大きな力を 負担(場合によっては、破壊)する一方、応力がスムーズに伝達されずに局所的に集中する。
- ② 単位体積重量については、コンクリートの方が 1.5 倍程度大きいため、地震時の慣性力は周辺の岩盤よりも大きく、また、偏心している場合には振動性状が複雑となる。といった問題が生じることかが予想される。

このため、置き換え材料として次のような材料を使用することとした。

- ① 西山層泥岩と同等以上の強度特性があること
- ② 長期的な安定性が保証されたセメントコンクリート系の材料であること
- ③ 単位体積重量,変形特性については,西山層泥岩と同程度であること。

このような置き換え材料を使用する時、地震時の応答特性は周辺の岩盤と同等となり、原子炉建屋に及ぼす影響も同等となる。また、原子炉建屋に働く力は、マンメイドロックを介して西山層に確実に伝達され、マンメイドロック周辺の西山層との間での変形や力の伝達はスムーズとなる。

上記より、マンメイドロックは、西山層と同等以上の力学的特性と有する置き換え材料として 設計されたものである。

# 3. マンメイドロックの物性値及びその根拠 マンメイドロックの配合を表 3-1 に、解析用物性値を表 3-2 に示す。 マンメイドロックの解析用物性値の設定根拠を、表 3-3 に示す。

表 3-1 マンメイドロックの配合

	単位体積重量			
西山泥岩	新期砂	固化材	水	$(g/cm^3)$
230	700	180	597	1.71

注: 固化材の構成割合は,クリンカー62%,スラグ20%, 石膏18%である(重量比)。

表 3-2 マンメイドロックの解析用物性値

物性値			マンメイドロック	
			原子炉建屋	コントロール建屋下
华	<b>勿理特性</b>	密度 ρ (g/cm³)	1. 75	1.75
	静的 変形特性	変形係数 E ₀ (N/mm ² )	1160	1020
		静ポアソン比 ν	0. 44	0.45
変	動的 変形特性	初期動せん断弾性係数 $G_0(N/mm^2)$	2110	1990
変形 特性		動ポアソン比 ν _d	0. 36	0. 36
		動せん断弾性係数の ひずみ依存性 $G/G_0\sim\gamma$	$1/(1+4.30 \gamma^{1.00})$	$1/(1+4.30 \gamma^{1.00})$
		減衰定数のひずみ依存特 性 h ~ γ	19. 0 $\gamma$ $^{0.60}$	19. 0 γ ^{0.60}
	ピーク強度	C _u (N/mm ² )	1. 84	1.84
強度		φ _u (°)	0	0
強度特性		$\sigma_{\rm t}$ $({ m N/mm}^2)$	0.666	0.666
	残留強度	$ m C_{ur}$ $ m (N/mm^2)$	1. 38	1. 38

注1: Pは, 平均有効拘束圧 $(N/mm^2)$ を示す。 注2:  $\gamma$ は, せん断ひずみ(%)を示す。

表 3-3 マンメイドロックの解析用物性値の設定根拠

			マンメイドロック		
物性値			原子炉建屋	コントロール建屋下	
物理特性                  密度 $ ho \; ({ m g/cm}^3)$			・密度試験結果 (土質工学会編「土質試験法」に準拠)		
	静的 変形特性	変形係数 E ₀ (N/mm ² )	・三軸圧縮試験結果 (土質工学会編「土質試験法」に準拠)		
		静ポアソン比 ν	• 三軸圧縮試験結果		
変	動的 変形特性	初期動せん断弾性係数 $G_0(N/mm^2)$	・弾性波速度測定試験 (物理探鉱技術協会編「岩石試料の速度測定要綱」に準拠)		
形 特 性		動ポアソン比 v d	・弾性波速度測定試験 (物理探鉱技術協会編「岩石試料の速度測定要綱」に準拠)		
		動せん断弾性係数の ひずみ依存性 G/G ₀ ~γ	・動的単純せん断試験 (変形試験)		
		減衰定数のひずみ依存特 性 h ~ γ	・動的単純せん断試験 (変形試験)		
強度特性	ピーク強度	C u (N/mm²)	・三軸圧縮試験結果 (土質工学会編「土質試験法」に準拠)		
		$\sigma_{\rm t}$ $({ m N/mm}^2)$	・圧裂引張強度試験 (JIS M 0303に準拠)		
	残留強度     C _{ur} (N/mm²)		・三軸圧縮試験結果 (土質工学会編「土質試験法」に準拠)		

340