福島第二原子力発電所 1号,2号,3号及び4号炉 廃止措置計画認可申請書 <補足説明資料>

令和2年11月 東京電力ホールディングス株式会社

目 次

本文8-1	使用済燃料貯蔵設備・核燃料物質について
本文 10-1	解体工事準備期間における放射性固体廃棄物の管理について
添付 3-1	解体工事準備期間における放射線業務従事者の被ばく線量は ついて
添付 3-2	解体工事準備期間における直接線及びスカイシャイン線による線量について
添付 3-3	気象資料の代表性について
添付 3-4	廃止措置に係る被ばく評価に使用する気象条件について
添付 5-1	解体工事準備期間に実施する汚染評価について
添付 6 追補-1	使用済燃料プール水全喪失時の評価について

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料
資料番号		本文8-1	
提出年月日		令和2年11月26	5日

福島第二原子力発電所 1号,2号,3号及び4号炉 使用済燃料貯蔵設備・核燃料物質について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	はじ	〕めに 1 -
2.	各	号炉の使用済燃料貯蔵設備(使用済燃料プール)・核燃料物質の概要
		1
2	. 1.	使用済燃料貯蔵設備(使用済燃料プール)の保管容量 1
2	. 2.	各号炉に貯蔵されている使用済燃料の型式・冷却年数 1
2.	. 3.	燃料設計仕様1
別組	₹1	新燃料の譲渡しに伴う発電所作業時の安全措置について 5

1. はじめに

本資料は、福島第二原子力発電所1号、2号、3号及び4号炉の廃止措置計画 認可申請書「八 核燃料物質の管理及び譲渡し」に記載した、各号炉の使用済燃 料貯蔵設備(使用済燃料プール)・核燃料物質の概要について説明する。

新燃料の譲渡しに伴う発電所作業時の安全措置について、別紙1に示す。

- 2. 各号炉の使用済燃料貯蔵設備(使用済燃料プール)・核燃料物質の概要
- 2.1. 使用済燃料貯蔵設備(使用済燃料プール)の保管容量

各号炉に貯蔵されている使用済燃料・新燃料の数量,使用済燃料貯蔵設備(使用済燃料プール)の保管容量を表1に示す。

2.2. 各号炉に貯蔵されている使用済燃料の型式・冷却年数

各号炉に貯蔵されている使用済燃料の数量を型式・冷却年数ごとに整理して, 表2に示す。

2.3. 燃料設計仕様

福島第二原子力発電所1号,2号,3号及び4号炉の原子炉設置許可申請書本 文の「五、原子炉及びその附属施設の位置,構造及び設備 ハ.原子炉本体の構 造及び設備 (ロ)燃料体」に記載されている燃料設計仕様のうち,平均ウラン 濃縮度・最高燃焼度を表3に示す。

以上

表1 使用済燃料貯蔵設備の保管容量

	, (1		
1号炉	2 号炉	炉	3 号炉	小厅	4 号炉	炉		
使用済 新燃料 燃料	使用済燃料	新燃料	使用済 燃料	新燃料	使用済 燃料	新燃料	貯蔵体数	保管容量
2, 334 200	I	I:	I:	Ŀ	I:	1	2, 534	2, 662
	2, 371	80	Ŀ	Ŀ	31	1	2, 482	2, 769
	I	ĺ	2, 360	184	I	_	2, 544	2, 740
l	I	ı	I	I	2, 436	80	2, 516	2, 769

各号炉に貯蔵されている使用済燃料の型式・冷却年数 表2

扩展		冷却年数 10 年未満	10 年未満	14-	冷却年	=数10年	冷却年数 10 年以上 20 年未満	米浦	*	令 却年数.	冷却年数 20 年以上		11111 <1
7	1号炉	2 号炉	3 号炉	4 号炉	1 号炉	2号炉	3 号炬	4 号炉	1号炉	2 号炉	3 号炬	4号炉	ПП
8 × 8	I	I	I	Ι	ſ	I	1	_	34	38	l	I	72
新型 8×8	ľ	I	Ţ	Į.	Į:	I:	E	Ľ	199	345 **2	609	610 **3	1, 763
新型 8×8 ジルコニウ ムライナ	I	I	1	I	I	I	I	_	526	558	249	366	1, 732
高燃焼度 8×8 ^{※1}	T	I	Ţ:	I	245	248	434	396	1	4	I .	E	1, 328
$9 \times 9^{*1}$	948	764	764	936	348	445	304	128	Ι	I	I	I	4, 637
<u>†</u> √□	948	764	764	986	593	869	738	524	862	945	828	926	9, 532
※1 少数体	な装荷の先	少数体装荷の先行使用燃料を含む	料を含む								(少)	(令和2年3)	3月末時点)

- 3 -

^{- 0 0} * * *

少数体装荷の先行使用燃料を含む 4 号炉の使用済燃料の貯蔵分(31 体)を含む 2 号炉原子炉建屋内の使用済燃料貯蔵設備の貯蔵分(31 体)を除く

表3 燃料設計仕様

			新型 8×8 ジルコニウムライナ燃料	高燃焼度 8×8燃料	9×9燃料
平均ウラン濃縮度	糸5 2. 7wt%	糸5 3. 0wt%	糸5 3. 0wt%	糸5 3. 4wt%	約3.7wt%
最高燃焼度	40,000MWd/t	40,000MWd/t	40,000MWd/t	50,000MWd/t	55,000MWd/t

別紙1 新燃料の譲渡しに伴う発電所作業時の安全措置について

1. はじめに

福島第二原子力発電所では、1号炉の使用済燃料貯蔵設備(使用済燃料プール)に200体の新燃料、2号炉の使用済燃料貯蔵設備(使用済燃料プール)に80体の新燃料、3号炉の使用済燃料貯蔵設備(使用済燃料プール)に184体の新燃料、4号炉の使用済燃料貯蔵設備(使用済燃料プール)に80体の新燃料を貯蔵しており、これらの新燃料は、原子炉本体等解体撤去期間の開始までに加工施設等へ全量搬出し、加工事業者等に譲り渡すこととしている。本資料は、使用済燃料プールに貯蔵している新燃料の譲渡しに伴う発電所作業時の安全措置について説明する。

2. 使用済燃料プールに貯蔵している新燃料の取扱い作業

使用済燃料プールに貯蔵している新燃料は、その貯蔵期間が長期に及び、燃料の表面にクラッドが付着している可能性があるため、加工事業者等への譲渡しに当たっては、加工施設等の受入基準を満足するように、必要に応じて汚染の除去を行う。汚染の除去を行う場合、燃料表面に付着している放射性物質の飛散等の汚染の拡大防止措置を実施した上で、図1に示すとおり、気中において燃料集合体1体ごとに燃料棒を引き抜き、燃料棒表面を除染、汚染検査を実施した後に、汚染のない燃料部材を用いて再度燃料集合体の形状に戻し、外観検査、寸法検査(燃料棒ピッチの間隙測定)を実施した上で、必要に応じて新燃料貯蔵庫(施設)に一時的に貯蔵した後、加工施設等に搬出するために輸送容器に収納する。

新燃料を輸送容器に収納した後,外観検査,線量当量率検査等の発送前検査 を実施する。合わせて,車両運搬確認申請,取決めの締結確認申請等の法令に基 づく手続きを行い,加工施設等に搬出する。 3. 使用済燃料プールに貯蔵している新燃料の除染作業に係わる安全措置

上述の燃料棒の引抜き、除染及び燃料集合体形状への再組立作業を実施する場合は、燃料棒を安全に取り扱うために専用の作業台を使用するとともに、取り扱う燃料集合体は1体ごととし、かつその1体分の燃料棒のみに限定することで臨界を防止する。

3.1. 燃料棒の変形及び損傷の防止

- (1) 燃料棒の引抜き,除染及び燃料集合体形状への再組立作業では,燃料集合体及び燃料棒は横置きの作業台上で取り扱う。また,作業台は,アンカーボルトで床に固定する。
- (2) 燃料集合体は、下部タイプレート及びスペーサ部分で作業台に固定する。
- (3) 引き抜いた燃料棒は、横置きの作業台で支持することで、落下しないようにする。
- (4) 作業台上の燃料棒移動経路には、燃料棒を変形させるおそれのある干渉物を設置しない。
- (5) 燃料棒の引抜き,除染及び燃料集合体形状への再組立作業は,加工事業者の燃料集合体組立解体工程の作業者として認定された者が実施する。

3.2. 臨界の防止

- (1) 評価条件
 - 評価対象燃料
 9×9燃料(A型), 9×9燃料(B型)
 - ② 解析コード

9×9燃料(A型):SCALE6.0(KENO-V.a)

「核データライブラリ:ENDF/B-VI]

9×9燃料 (B型): SCALE 5. 1 (KENO-V. a)

「核データライブラリ: ENDF/B-V]

- ③ 図2に示す稠密となる三角格子配列で燃料棒91本のピッチ(中心間距離)を変化させる。ここで、燃料棒本数は9×9(A型)1体分の燃料棒74本及び9×9(B型)1体分の燃料棒72本に比べて保守的な設定となっている。
- ④ 燃料棒の軸方向は無限長さとし、周辺には十分な厚さの水反射体を置く。
- ⑤ すべての燃料棒に一律濃縮度 5 %のペレットを封入することを仮定する。
- ⑥ ペレット密度は、理論密度 100%とする。
- ⑦ 中性子を吸収するガドリニアを考慮しない。

(2) 評価結果

9×9燃料 (A型) の燃料棒ピッチを変化させた場合の未臨界性評価結果を図3に,9×9燃料 (B型) 燃料棒ピッチを変化させた場合の未臨界性評価結果を図4に示す。ここで、実効増倍率はモンテカルロ計算に伴う統計誤差を考慮し標準偏差の3倍の値を加えている。実効増倍率の最大値は9×9燃料 (A型) の場合0.931,9×9燃料 (B型) の場合0.930であり,万一水没したとしても臨界に達するおそれはない。

以上

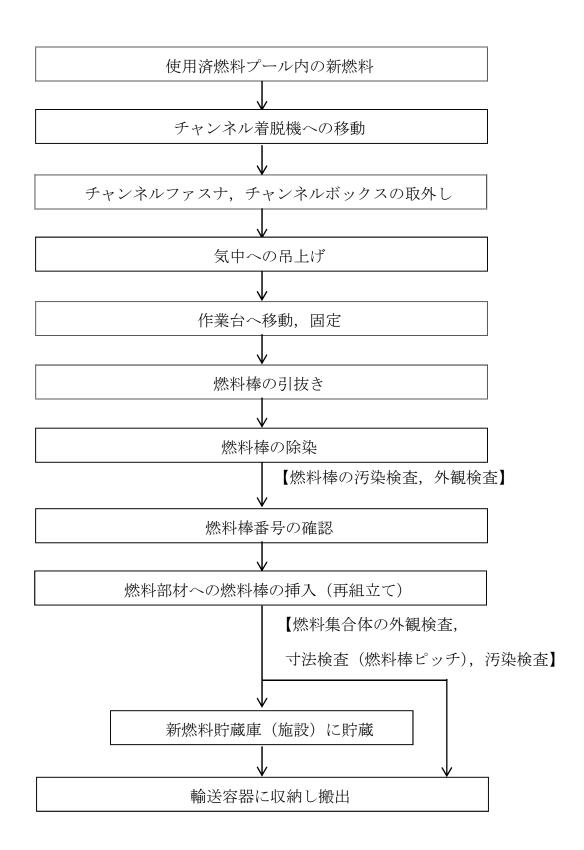


図1 使用済燃料プール内新燃料の取扱い作業

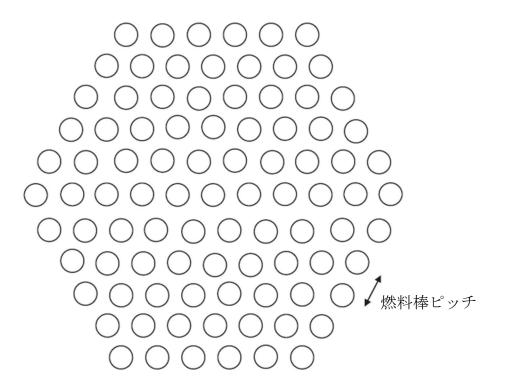


図2 三角格子配列

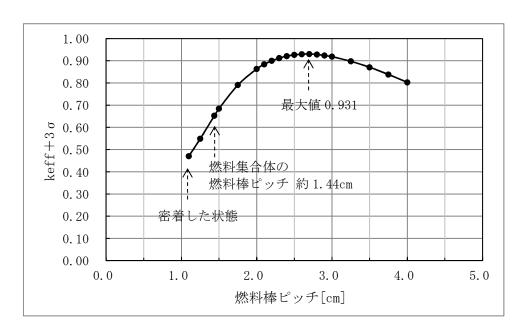


図3 燃料棒ピッチ変化時の未臨界性評価結果(9×9燃料(A型))

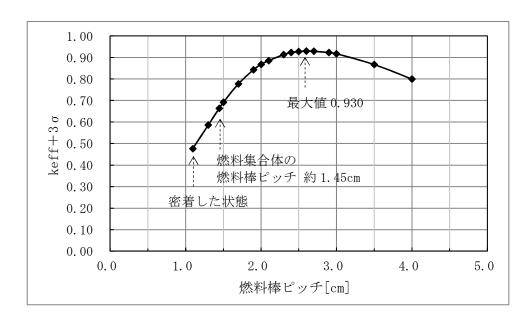


図4 燃料棒ピッチ変化時の未臨界性評価結果(9×9燃料(B型))

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料
資料番号		本文10-1	
提出年月日		令和2年11月26	6日

福島第二原子力発電所 1号,2号,3号及び4号炉 解体工事準備期間における 放射性固体廃棄物の管理について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	解	本本本のでは、	1 -
2.	固	体廃棄物貯蔵庫における管理	1 -
	2. 1.	固体廃棄物貯蔵庫の保管容量	1 -
	2. 2.	解体工事準備期間における推定発生量	1 -
3.	各	- 槽及び各タンクにおける管理 2	2 -
	3. 1.	各槽及び各タンクの貯蔵容量 2	2 -
	3. 2.	解体工事準備期間における推定発生量	2 -

1. 解体工事準備期間における放射性固体廃棄物の管理

解体工事準備期間に発生すると予測している放射性固体廃棄物のうち、固化 体と雑固体廃棄物は固体廃棄物貯蔵庫に貯蔵保管することとしている。

また,使用済樹脂は原子炉冷却材浄化系沈降分離槽,復水浄化系沈降分離槽, 又は使用済樹脂槽(以下「各槽」という。)に,濃縮廃液は濃縮廃液タンク又は 濃縮洗濯廃液タンク(以下「各タンク」という。)に貯蔵保管することとしてい る。

2. 固体廃棄物貯蔵庫における管理

2.1. 固体廃棄物貯蔵庫の保管容量

固体廃棄物貯蔵庫は,200Lドラム缶32,000 本相当を貯蔵保管する能力がある。

令和2年3月末時点での貯蔵保管量は21,795本であり,約10,200本の空き 容量を有している。

2.2. 解体工事準備期間における推定発生量

解体工事準備期間中に廃止措置対象施設から発生する放射性固体廃棄物の種類としては、除染、施設の維持管理等により発生する使用済樹脂及び雑固体廃棄物等の原子炉運転中と同様な廃棄物が想定される。

原子炉停止中の平成24年度~平成30年度(7年間)における,1号,2号, 3号及び4号炉からの放射性固体廃棄物発生量と減少量(焼却等による減容に よる減少量)の年間平均は第1表に示すとおりである。

解体工事準備期間における放射性固体廃棄物の推定発生量は,第2表に示す とおり,1号,2号,3号及び4号炉合計で約7,100本(年間約710本)と想定 している。 解体工事準備期間では放射性物質によって汚染された区域の解体工事を行わず,原子炉運転中の施設定期検査時と同等の状態が継続すること,原子炉運転中と同様に発生量に応じて計画的に廃棄物低減を図っていくことから,1号,2号,3号及び4号炉から発生する放射性固体廃棄物は固体廃棄物貯蔵庫に保管可能であると考えている。

3. 各槽及び各タンクにおける管理

3.1. 各槽及び各タンクの貯蔵容量

各槽及び各タンクの貯蔵容量及び貯蔵量は第3表のとおりであり、各槽及び 各タンクとも空き容量には余裕がある。

3.2. 解体工事準備期間における推定発生量

解体工事準備期間の10年間において、廃止措置対象施設から発生する使用済 樹脂は、第4表に示すとおり、1号、2号、3号及び4号炉合計で約120 m³と 想定している。

これらの廃棄物は固化処理を行うことにより、各槽及び各タンクの空き容量 を確保することができるため、第3表に示す各槽及び各タンクの貯蔵容量を超 過しないように管理することが可能であると考えている。

第1表 平成24年度~平成30年度(7年間)の 放射性固体廃棄物の発生量及び減少量

(単位:本*1)

	種類	固化体	雑固体廃棄物
	発生量	101	4, 816
	減少量	0	▲ 794
	発電所内減量	0	▲ 794
	発電所外減量	0	0
	合 計	101	4, 022
£	F間平均(本 ^{※1} /年)	約 15 ^{**2}	約 575 ^{*2}

※1:200Lドラム缶相当。1号,2号,3号及び4号炉合算値を示す。

※2:1本単位で切り上げた値。

第2表 解体工事準備期間における放射性固体廃棄物の推定発生量

(単位:本*1/10年)

種類	1号炉	2号炉	3 号炉	4 号炉
固化体	約 37	約 37	約 37	約 37
雑固体廃棄物	約 1,720	約 1,720	約 1,720	約 1,720
合 計		約7,1	100*2	

※1:200 L ドラム缶相当。

※2:100本単位で切り上げた値。

第3表 各槽及び各タンクの貯蔵容量及び貯蔵量

	貯蔵・保管場所	種類	貯蔵量**	貯蔵容量
	復水浄化系沈降分離 槽	使用済樹脂	約2,353 m³	約4,800 m³ (約800 m³/基×6基)
1号及び	原子炉冷却材浄化系 沈降分離槽	使用済樹脂	約152 m³	約800 m³ (約200 m³/基×4基)
2号炉 廃棄物	使用済樹脂槽	使用済樹脂	約787 m³	約1,200 m³ (約300 m³/基×4基)
処理建屋 	濃縮廃液タンク	濃縮廃液	約138 m³	約180 m³ (約60 m³/基×3基)
	濃縮洗濯廃液タンク	濃縮廃液	約37 m³	約80 m³ (約40 m³/基×2基)
	復水浄化系沈降分離 槽	使用済樹脂	約1,483 m³	約2920 m³ (約730 m³/基×4基)
3号及び 4号炉	原子炉冷却材浄化系 沈降分離槽	使用済樹脂	約124 m³	約740 m³ (約370 m³/基×2基)
廃棄物 処理建屋	使用済樹脂槽	使用済樹脂	約384 m³	約800 m³ (約400 m³/基×2基)
	濃縮廃液タンク	濃縮廃液	約129 m³	約150 m³ (約50 m³/基×3基)

※: 令和2年3月末時点での貯蔵量を示す。

第4表 解体工事準備期間における使用済樹脂の推定発生量

(単位:m³/10年)

種 類	1号炉	2号炉	3号炉	4 号炉
使用済樹脂	約 30	約 30	約 30	約 30
合 計		約	120	

以上

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料			
資料番号	添付3-1					
提出年月日	令和2年11月26日					

福島第二原子力発電所 1号,2号,3号及び4号炉 解体工事準備期間における 放射線業務従事者の被ばく線量ついて

令和2年11月 東京電力ホールディングス株式会社

目 次

1.		解何	本工事準備期間における放射線業務従事者の被ばく線量 1 -
	1.	1.	原子炉建屋(家)内核燃料物質貯蔵設備からの核燃料物質の
			搬出 1 -
	1. 2	2.	汚染状況の調査 2 -
	1. 3	3.	管理区域外設備の解体撤去 2 -
	1. 4	4.	原子炉施設の維持管理 2 -
	1. 5	5.	核燃料物質による汚染の除去 3 -
	1.6	6.	放射性廃棄物の処理処分 3 -
2.		解何	本工事準備期間における放射線業務従事者の総被ばく線量の算定結
		果	3 -
3.		原-	子炉本体周辺設備等解体撤去期間以降における放射線業務従事者の
		被	- ばく線量

1. 解体工事準備期間における放射線業務従事者の被ばく線量

解体工事準備期間に実施する主な作業における放射線業務従事者の被ばく線 量について,過去の同種作業や原子炉停止以降の実績等を踏まえ,以下の考えに 基づき算定する。

1.1. 原子炉建屋(家)内核燃料物質貯蔵設備からの核燃料物質の搬出

1号,2号,3号及び4号炉に貯蔵している核燃料物質は,原子炉本体等解体撤去期間の開始まで(22年間)に,原子炉建屋(家)原子炉棟内の使用済燃料貯蔵設備(使用済燃料プール)から搬出することを計画している。

搬出対象を使用済燃料と新燃料とに分類し、また、本評価においては解体工事 準備期間中(10年間)にすべての核燃料物質を搬出することを想定し、被ばく 線量を算定する。

(1) 使用済燃料の搬出

1号, 2号, 3号及び4号炉に貯蔵している使用済燃料の全数を,原子炉本体等解体撤去期間の開始までに搬出することを計画している。

解体工事準備期間に実施する使用済燃料の搬出は、原子炉運転中に実施 してきた使用済燃料の搬出作業と同等であることから、至近の使用済燃料 の搬出作業で輸送した燃料集合体の数量と放射線業務従事者の被ばく実 績を踏まえ、被ばく線量を算定する。

(2) 新燃料の搬出

1号, 2号, 3号及び4号炉に貯蔵している新燃料の全数を,原子炉本 体等解体撤去期間の開始までに搬出することを計画している。

解体工事準備期間に実施する新燃料の搬出は、原子炉運転中に実施してきた新燃料の搬入作業と同等であることから、至近の新燃料の搬入作業で輸送した燃料集合体の数量と放射線業務従事者の被ばく実績を踏まえ、被

ばく線量を算定する。

また,新燃料は,すべて1号,2号,3号及び4号炉原子炉建屋(家)原子炉棟内の使用済燃料貯蔵設備(使用済燃料プール)に貯蔵されていることから,搬出に先立ち,必要に応じて除染等作業(気中での燃料棒の引抜き,除染及び燃料集合体形状への再組み立て)を実施する。この作業に要する想定作業員数及び想定作業期間,作業場所の代表雰囲気線量当量率を踏まえ,被ばく線量を算定する。

1.2. 汚染状況の調査

1号,2号,3号及び4号炉に残存する放射性物質の量を把握するため,放射化汚染及び二次的な汚染の状況調査を実施する。

解体工事準備期間に実施する汚染状況の調査は、主に設備、機器及び配管外部 からγ線等の測定を実施することを想定しているため、管理区域内の線量当量 率、汚染状況の調査に要する想定作業員数及び想定作業期間を踏まえ、被ばく線 量を算定する。

1.3. 管理区域外設備の解体撤去

解体工事準備期間に実施する解体撤去工事は,管理区域外の汚染のない設備・ 機器が対象となることから,被ばく線量はないと評価する。

1.4. 原子炉施設の維持管理

解体工事準備期間の原子炉施設の維持管理は、原子炉停止中の保全活動と同等であるため、過去の保全活動における放射線業務従事者の被ばく実績及び解体工事準備期間の年数(10年間)を踏まえ、被ばく線量を算定する。

1.5. 核燃料物質による汚染の除去

解体工事準備期間に実施する汚染の除去は、二次的な汚染が残存していることが確認され、対象の解体前に除染を行うことにより、解体撤去等における放射 線業務従事者の受ける被ばく線量の合理的な低減が期待できる箇所を対象に実施する。

一方で、1号、2号、3号及び4号炉は原子炉の運転を停止してから長期間が経過していること、また、放射能レベルの比較的高い原子炉容器及び原子炉容器を取り囲む放射線遮蔽体を含む領域は、残存放射能の時間的減衰を図るため、安全貯蔵を行うこととしているほか、解体工事準備期間に実施する汚染の除去は、配管系統全体を薬液で洗浄するような大規模な除染を行わず、解体施設・設備の局所的な除染を行う計画であり、原子炉運転中の保全活動(設備の維持管理・点検等により発生する除染行為)に伴う被ばく線量の範囲内での除染工事が実施できると想定している。したがって、汚染の除去における被ばく線量は、「1.4.の原子炉施設の維持管理」に含まれると評価する。

1.6. 放射性廃棄物の処理処分

解体工事準備期間に発生する放射性廃棄物は、原子炉停止中と同様と想定されるため、放射性廃棄物の処理処分における被ばく線量は、「1.4.の原子炉施設の維持管理」に含まれると評価する。

- 2. 解体工事準備期間における放射線業務従事者の総被ばく線量の算定結 果
- 1. の条件により、1号、2号、3号及び4号炉の解体工事準備期間における 放射線業務従事者の被ばく線量を算定した結果を、それぞれ第1、第2、第3及

び第4表に示す。

1号, 2号, 3号及び4号炉の解体工事準備期間(10年間)の作業における 放射線業務従事者の総被ばく線量は, それぞれ約0.7人・Sv(10年間の合計) となる。

3. 原子炉本体周辺設備等解体撤去期間以降における放射線業務従事者の 被ばく線量

原子炉本体周辺設備等解体撤去期間以降については、解体工事準備期間に実施する汚染状況の調査結果、解体撤去の工法及び手順についての検討結果を踏まえ、原子炉本体周辺設備等解体撤去期間に入るまでに評価を実施し、廃止措置計画に反映し変更の認可を受ける。

第1表 解体工事準備期間における放射線業務従事者の被ばく線量(1号炉)

作業		算定方法	被ばく線量 (人・Sv)
	使用済燃料	① 過去の同種作業被ばく実績:0.14人・mSv (114体輸送した際の実績) ② 使用済燃料体数:2,334体 0.14人・mSv÷114体×2,334体≒2.87人・mSv 算定結果: 2.87人・mSv	約 0.01
原子炉建家 内核燃料備 質貯蔵設核 からの核 料物質の搬 出	新燃料	【使用済燃料貯蔵設備からの搬出】 ① 過去の同種作業被ばく実績:0.63人・mSv(156体輸送した際の実績) ② 新燃料体数:200体 0.63人・mSv÷156体×200体≒0.81人・mSv 算定結果: 0.81人・mSv 【新燃料の除染等作業】 ① 1日当たりの想定被ばく線量:0.003mSv/日 ② 想定作業者数:22人 ③ 想定作業期間:200日 (1日当たり1体の取扱いを想定) 0.003mSv/日×22人×200日=13.20人・mSv 算定結果: 13.20人・mSv	約 0. 02
汚染状況の調査		① 1日当たりの想定被ばく線量:0.1mSv/日 ② 想定作業者数:5人 ③ 想定作業期間:2年(240日/年) 0.1mSv/日×5人×2年×240日/年=240人・mSv 算定結果: 240人・mSv	約 0.24
原子炉施設の維持管 理等		① 1年当たりの想定被ばく線量:35.79人・mSv/年 (過去5年間での被ばく実績の平均値) ② 解体工事準備期間:10年 35.79人・mSv/年×10年=357.9人・mSv 算定結果: 357.9人・mSv	約 0.36
合計*1 (10 年間)		約 0.7	
【参考】福島第二原子力発電所の停止前の10年間の合計被ばく線量**2(平成13年度~平成22年度)			約 13

第2表 解体工事準備期間における放射線業務従事者の被ばく線量(2号炉)

作業		算定方法	被ばく線量 (人・Sv)
	使用済 燃料	① 過去の同種作業被ばく実績:0.14人・mSv (114 体輸送した際の実績) ② 使用済燃料体数:2,402 体 (4号炉から移送された31 体を含む体数) 0.14人・mSv÷114体×2,402体≒2.95人・mSv 算定結果: 2.95人・mSv	約 0.01
原子炉建屋 内核燃料物質貯蔵設備からの核燃料物質の搬出 新燃料		【使用済燃料貯蔵設備からの搬出】 ① 過去の同種作業被ばく実績: 0.63 人・mSv (156 体輸送した際の実績) ② 新燃料体数: 80 体 0.63 人・mSv÷156 体×80 体≒0.32 人・mSv 算定結果: 0.32 人・mSv 【新燃料の除染等作業】 ① 1日当たりの想定被ばく線量: 0.003mSv/日 ② 想定作業者数: 22 人 ③ 想定作業期間: 80 日 (1日当たり1体の取扱いを想定) 0.003mSv/日×22人×80日=5.28人・mSv 算定結果: 5.28人・mSv	約 0. 01
汚染状況の調査		 ① 1日当たりの想定被ばく線量:0.1mSv/日 ② 想定作業者数:5人 ③ 想定作業期間:2年(240日/年) 0.1mSv/日×5人×2年×240日/年=240人・mSv 算定結果: 240人・mSv 	約 0. 24
原子炉施設の維持管 理等		① 1年当たりの想定被ばく線量:35.79人・mSv/年 (過去5年間での被ばく実績の平均値) ② 解体工事準備期間:10年 35.79人・mSv/年×10年=357.9人・mSv 算定結果: 357.9人・mSv	約 0.36
合計*1 (10 年間)		約 0.7	
【参考】福島第二原子力発電所の停止前の10年間の合計被ばく線量 ^{※2} (平成13年度~平成22年度)			

第3表 解体工事準備期間における放射線業務従事者の被ばく線量(3号炉)

作業		算定方法	被ばく線量 (人・Sv)
	使用済燃料	① 過去の同種作業被ばく実績:0.14人・mSv (114 体輸送した際の実績) ② 使用済燃料体数:2,360 体 0.14人・mSv÷114体×2,360 体≒2.90人・mSv 算定結果: 2.90人・mSv	約 0.01
原子炉建屋 内核燃料備 質貯蔵核 からの が り が り 質 り の が り 質 り り り り り り り り り り り り り り り り り	新燃料	【使用済燃料貯蔵設備からの搬出】 ① 過去の同種作業被ばく実績:0.63人・mSv(156体輸送した際の実績) ② 新燃料体数:184体 0.63人・mSv÷156体×184体≒0.74人・mSv 算定結果: 0.74人・mSv 【新燃料の除染等作業】 ① 1日当たりの想定被ばく線量:0.006mSv/日 ② 想定作業者数:22人 ③ 想定作業期間:184日 (1日当たり1体の取扱いを想定) 0.006mSv/日×22人×184日≒24.29人・mSv 算定結果: 24.29人・mSv	約 0. 03
汚染状況の調査		① 1日当たりの想定被ばく線量:0.1mSv/日 ② 想定作業者数:5人 ③ 想定作業期間:2年(240日/年) 0.1mSv/日×5人×2年×240日/年=240人・mSv 算定結果: 240人・mSv	約 0. 24
原子炉施設の維持管 理等		① 1年当たりの想定被ばく線量:35.79人・mSv/年 (過去5年間での被ばく実績の平均値) ② 解体工事準備期間:10年 35.79人・mSv/年×10年=357.9人・mSv 算定結果: 357.9人・mSv	約 0. 36
		合計*1 (10 年間)	約 0.7
【参考】福島第二原子力発電所の停止前の 10 年間の合計被ばく線量 ^{*2} (平成 13 年度~平成 22 年度)			約 13

第4表 解体工事準備期間における放射線業務従事者の被ばく線量(4号炉)

作業		算定方法	被ばく線量 (人・Sv)		
使用燃料		① 過去の同種作業被ばく実績:0.14人・mSv (114体輸送した際の実績) ② 使用済燃料体数:2,436体 0.14人・mSv÷114体×2,436体≒2.99人・mSv 算定結果: 2.99人・mSv	約 0.01		
原子炉建屋 内核燃料物 質貯蔵設備 からの核燃 料物質の搬 出 新燃料	新燃料	【使用済燃料貯蔵設備からの搬出】 ① 過去の同種作業被ばく実績: 0.63 人・mSv (156 体輸送した際の実績) ② 新燃料体数: 80 体 0.63 人・mSv÷156 体×80 体≒0.32 人・mSv 算定結果: 0.32 人・mSv 【新燃料の除染等作業】 ① 1日当たりの想定被ばく線量: 0.006mSv/日	約 0. 02		
		 ② 想定作業者数:22人 ③ 想定作業期間:80日 (1日当たり1体の取扱いを想定) 0.006mSv/日×22人×80日=10.56人・mSv 算定結果: 10.56人・mSv 			
汚染状況の調査		 ① 1日当たりの想定被ばく線量:0.1mSv/日 ② 想定作業者数:5人 ③ 想定作業期間:2年(240日/年) 0.1mSv/日×5人×2年×240日/年=240人・mSv 算定結果: 240人・mSv 	約 0. 24		
原子炉施設の維持管 理等		 ① 1年当たりの想定被ばく線量:35.79人・mSv/年 (過去5年間での被ばく実績の平均値) ② 解体工事準備期間:10年 35.79人・mSv/年×10年=357.9人・mSv 算定結果: 357.9人・mSv 	約 0. 36		
		合計*1 (10 年間)			
【参考】福島第二原子力発電所の停止前の 10 年間の合計被ばく線量**2 13 年度~平成 22 年度)			約 13		

以上

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料
資料番号		添付3-2	
提出年月日		令和2年11月26	日

福島第二原子力発電所 1号,2号,3号及び4号炉 解体工事準備期間における直接線及び スカイシャイン線による線量について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	既往の)評価結	果										 . –	1	-
2.	1号,	2号,	3 号及	び4号	炉の屋	笔止措	造 買	階に	おけ	る記	平価		 . –	1	-
2	.1. 固体	ኦ廃棄物	貯蔵庫の	の直接	線及で	バスカ	イシ	ヤイ	ン紡	評価	五 結	果	 . –	2	-
	2. 1. 1.	評価条	件										 _	2	-
	2. 1. 2.	評価方	法										 _	3	-
	2. 1. 3.	評価結	果										 _	3	-
別糸	氏1 線	源強度に	こよる保	守性.									 _	8	-
別糸	氏2 ド	ラム缶間	引隔によ	る影響	坚 * · · · ·								 _	9	-
別網	£3 [参考】原	成度解析	の結果	₹								 _	10	_

1. 既往の評価結果

昭和60年10月,サイトバンカ,使用済燃料輸送容器(以下「キャスク」という。)保管建屋の設置等に伴う原子炉設置変更許可申請において,直接線及びスカイシャイン線の線量を評価し,既設の建物を含めた人の居住する可能性のある敷地境界外における線量が,原子炉安全基準専門部会報告書「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」に示される年間50μGy以下であることを確認している。

評価地点を第1図、評価結果を第1表(原子炉運転中)に示す。

なお、上記の線量評価においては、1号、2号、3号及び4号炉が稼働しているものとして評価している。

2. 1号, 2号, 3号及び4号炉の廃止措置段階における評価

1号,2号,3号及び4号炉の解体工事準備期間における施設の状態は,廃止措置計画認可申請書に記載のとおり,「解体工事準備期間中は,1号,2号,3号及び4号炉内において放射性物質によって汚染された区域の解体工事を行わず原子炉運転中の施設定期検査時と同等の状態が継続する。また,既存の建物及び構築物等を維持する。1号,2号,3号及び4号炉運転中の直接線及びスカイシャイン線に主に寄与するタービン建屋(家)からの線量は,主蒸気中に含まれる窒素(N-16)を線源としている。1号,2号,3号及び4号炉は,運転を停止してから長期間が経過していること,窒素(N-16)の半減期は約7秒であることから,タービン建屋(家)からの線量は無視できる」としている。また,放射性固体廃棄物の取扱いについては,「固体廃棄物貯蔵庫等の貯蔵容量を超えないように貯蔵保管するとともに,安全確保のために必要な機能及び性能を維持する」としている。

したがって、1号、2号、3号及び4号炉の解体工事準備期間中の評価については、廃止措置に伴い新たに線源となる施設はなく、1号、2号、3号及び4号炉の運転がないことから、第1表(原子炉運転中)の「タービン建屋(家)」からの線量を差し引くこととなるが、1号、2号、3号及び4号炉タービン建屋(家)を除いた場合、固体廃棄物貯蔵庫からの線量の寄与分が大きくなるため、敷地境界線量の最大地点は固体廃棄物貯蔵庫から敷地境界までの距離が最短となる地点に変更となる。(第1図)

固体廃棄物貯蔵庫からの直接線及びスカイシャイン線による線量については、工事計画認可申請書において、固体廃棄物貯蔵庫より約 250m 地点で約 $12\,\mu\,\mathrm{Gy/y}$ と評価している。ただし、平成 21 年 2 月、敷地面積の一部縮小による原子炉設置変更許可申請において、固体廃棄物貯蔵庫から敷地境界までの距離が約 $200\mathrm{m}$ に変更となったことから、固体廃棄物貯蔵庫からの直接線及びスカイシャイン線による線量評価を改めて実施している。なお、直接線の評価では、敷地境界から固体廃棄物貯蔵庫を視認できる範囲が部分的であることを考慮して、線源形状のモデル化を実施している。

2.1. 固体廃棄物貯蔵庫の直接線及びスカイシャイン線評価結果

2.1.1. 評価条件

評価条件は,工事計画認可申請書に記載の評価と基本的に同じであるが,直接 線評価における線源形状,評価地点までの距離等について一部見直しを行って いる。

- (1) 壁厚, 天井厚 50cm のコンクリート (密度 2.15g/cm³) とする。(工事計画認可申請書記載評価と同条件)
- (2) 収容ドラム缶はすべてセメント固化体(密度 2.0g/cm³)とし,線源強度は Co-60 換算値で 25mCi/ドラムとする。(工事計画認可申請書記載評価と同条件)

- (3) ガンマ線エネルギは 1.17MeV, 1.33MeV とする。
- (4) 線源形状は、直接線の評価では敷地境界から視認できる範囲の直方体とし、 北面と西面でそれぞれ最大となる線源範囲を計算に使用した。スカイシャイン線の評価では地上階における建屋内ドラム缶収容全スペース分の直方体とする。ただし、建屋内を仕切るRC壁部分については、空気としてモデル化する。線源モデルについて第2図に示す。

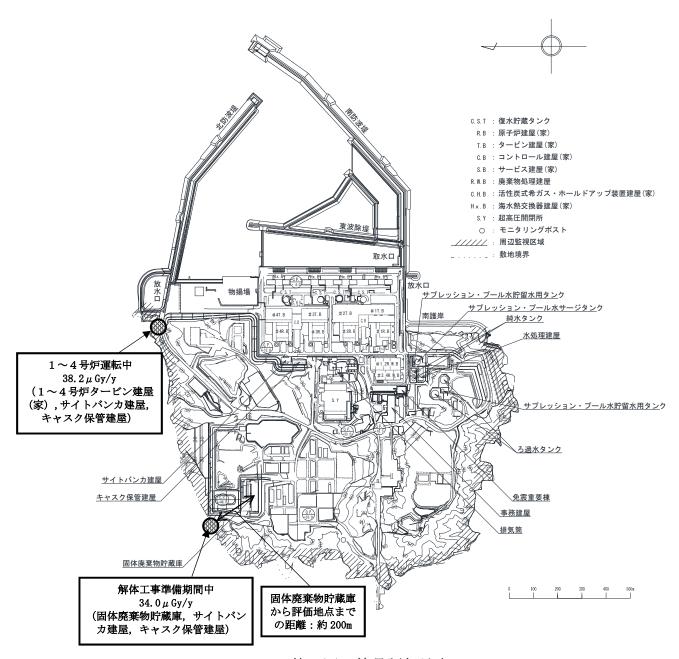
直接線評価 : 幅約 8.0m, 奥行約 16.0m, 高さ約 3.2m

スカイシャイン線評価 : 幅約 112.5m, 奥行約 27.6m, 高さ約 3.2m

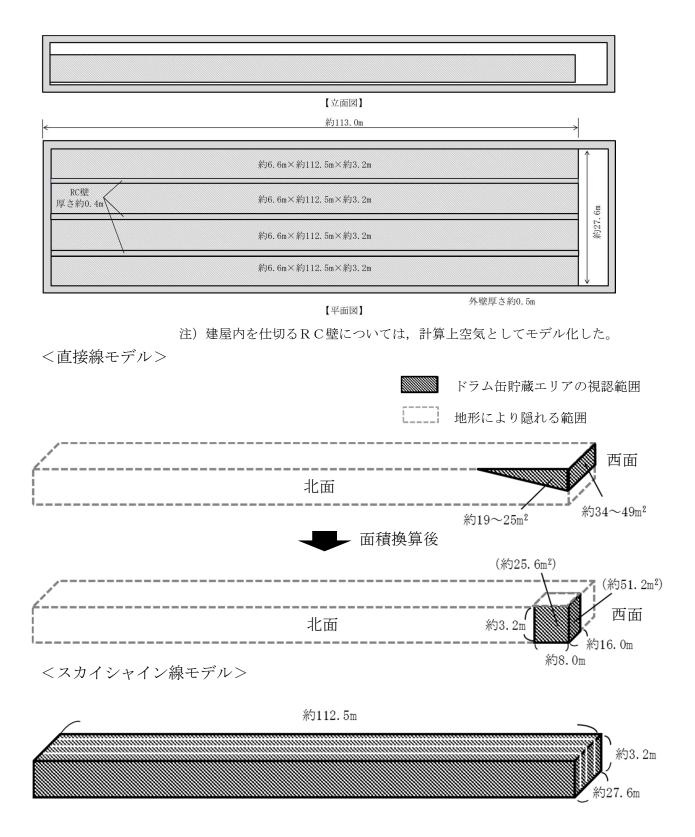
(5) 評価地点は固体廃棄物貯蔵庫から約 200m 地点の敷地境界とする。

なお,評価地点の標高は固体廃棄物貯蔵庫よりも低い位置関係であることから,保守的な計算結果となるように,標高差を考慮していない。

2.1.2. 評価方法


直接線については三次元点減衰核積分コード (QAD-CGGP2R),スカイシャイン線については一次元 S_N 法輸送計算コード (ANISN)及び一回散乱ガンマ線計算コード (G33-GP2R)を用いて、評価地点における線量を評価する。

2.1.3. 評価結果


固体廃棄物貯蔵庫からの直接線及びスカイシャイン線による線量は 32.3μ Gy/y (直接線 9.7μ Gy/y, スカイシャイン線 22.6μ Gy/y) となり,解体工事準備期間中のサイト合計値は既往の評価結果のサイトバンカ建屋及びキャスク保管建屋と合計して 34.0μ Gy/y と評価される。この結果から,「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」に示される年間 50μ Gy 以下であることが確認できる。

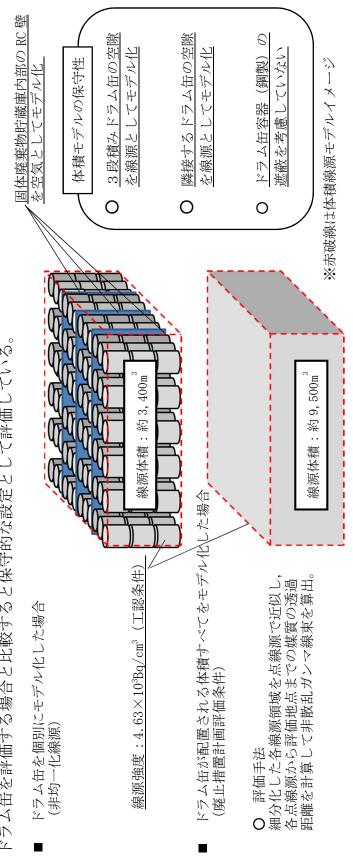
なお、サイトバンカ建屋及びキャスク保管建屋からの直接線及びスカイシャ

イン線による線量については、原子炉運転中の評価地点までの距離よりも解体 工事準備期間中の評価地点までの距離の方が長くなること及び原子炉運転中の 評価地点での線量が十分に低いことから、原子炉運転中の評価地点における評 価結果を用いている。

第1図 線量評価地点

第2図 直接線及びスカイシャイン線評価の線源モデル

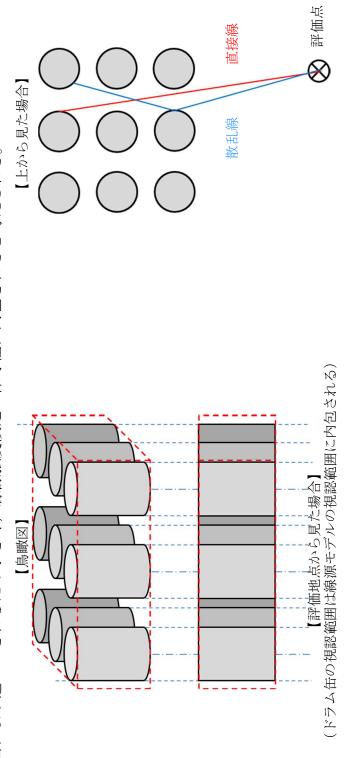
第1表 直接線及びスカイシャイン線による線量


単位: μ Gy/y

		原子炉運転中	解体工事準備期間中		
	1 号炉	0. 9	_		
カードン母長(字)	2 号炉	2. 2	_		
タービン建屋(家)	3 号炉	11. 4	_		
	4 号炉	22. 0	_		
サイトバンカ建	屋	0. 1	0. 1 ^{** 2}		
キャスク保管建	屋	1.6	1. 6 [*] ²		
固体廃棄物貯蔵	庫	*1	32. 3		
合 計		38. 2	34. 0		
判断基準		50	50		

- ※1 固体廃棄物貯蔵庫からの直接線及びスカイシャイン線による線量については、評価地点までの距離、地形影響により十分に低い値となるため、考慮していない。
- ※2 サイトバンカ建屋及びキャスク保管建屋の直接線及びスカイシャイン線による線量については、原子炉運転中の評価地点までの距離よりも解体工事準備期間中の評価地点までの距離の方が長くなること及び原子炉運転中の評価地点で得られた値が十分に低いことから、原子炉運転中の評価地点における評価結果を用いている。

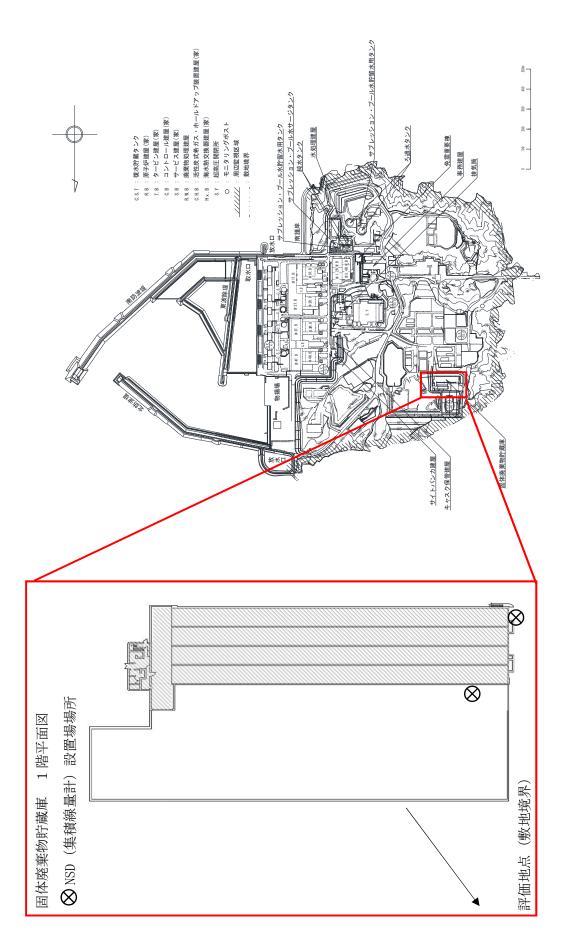
別紙1 線源強度による保守性


個々の 7 ∞ ドラム缶が配置される範囲を内包するよう体積線源とし、 $\ddot{\circ}$ 個々のドラム缶内の線源領域に貯蔵体数を乗じた総体積より約 線源領域全体における線源強度は, 単位体積あたりの線源強度を保存していることから、 ム缶を評価する場合と比較すると保守的な設定として評価している。 従前評価と同様に, モデル化している。これより線源モデルの体積は、 本評価で使用している線源モデルは、 また, **部大きくなる。** ドビ

別紙2 ドラム缶間隔による影響

評価点から見て、後列に並ぶドラム缶による影響は、評価対象がガンマ線であることから後列のドラム缶の視認範囲 に依存する。この視認範囲は本評価で使用した線源モデルの視認範囲に内包される。

一方で、ドラム缶を個別にモデル化した場合、ドラム缶表面で散乱した後列ドラム缶のガンマ線による影響が少なか らず存在するが、評価線質が直進性の高いガンマ線であることから、視認範囲外からのガンマ線の影響は前列のドラム 缶により逓へいされるため小さく、線源強度設定の保守性に内包されると考えられる。


別紙3 【参考】感度解析の結果

固体廃棄物貯蔵庫外壁表面(管理区域境界)での3ヶ月集積線量当量測定記録の実測値(ケース①)に対して,線源 強度のみ変化させた以下に示すケース②とケース③で外壁表面における3ヶ月集積線量を算出し、ケース①との保守性 について比較した。

ケース①と比較して、ケース②では約3倍、ケース③では約20倍の保守性が確認されている。

	ケース① (外壁表面での実測線量)	7-7®	ケース③ (廃止措置計画評価条件)
線源強度	l	固体廃棄物貯蔵庫 1 階フロア内に 貯蔵されているドラム缶の表面線 量当量率の最大値 $: 0.5 m Sv/h$ $(7.52 \times 10^2 B q/cm)$	エ認条件:25mCi/ドラム (4.63×10³ Bq/cm³)
外壁表面における3 ヶ月集積線量 (500 時間換算値)	約1.1×10 ⁻¹ mSv**	約3.8×10 ⁻¹ mSv	約2.3×10 ⁰ mSv
おのそ⊕メーチ	I	約3倍	約 20 倍
ケース②との比	I	I	約6倍
※1:2019年12月時点の)測定実績:「福島第二原子力発電所固	※1:2019 年 12 月時点の測定実績:「福島第二原子力発電所固体廃棄物貯蔵庫管理区域境界3ヶ月集積線量当量測定記録	線量当量測定記錄!

※2:2019年12月31日までの時間減衰を考慮したドラム缶表面最大線量当量率

【参考】集積線量計測地点

福島第二原子力発電所1号,	2号, 3号及び4号炉 審査資料
資料番号	添付3-3
提出年月日	令和2年11月26日

福島第二原子力発電所 1号,2号,3号及び4号炉 気象資料の代表性について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	は1	じめに	_	1 -
2.	気拿	象データの代表性の検討	_	1 -
2. 1		検定方法	_	1 -
2. 2	2.	検定結果	_	2 -
別紙	1	昭和 57 年気象データの検定結果について	_	8 -

1. はじめに

原子炉設置許可申請書では、福島第二原子力発電所内で観測した昭和57年1月から昭和57年12月までの1年間の気象データを安全解析に用いることとしている。安全解析を実施する上で、この1年間の気象状態が長期間の気象状態を代表しているかどうかを至近10年間の気象データを用いて異常年検定を実施したところ、棄却数が多いことから、長期間の気象状態を代表するとは言い難く、安全解析に用いる気象条件の見直しが必要である。

このため、廃止措置計画認可申請書における安全解析に用いる気象データについては、敷地内において観測した平成30年4月から平成31年3月までの1年間の気象データを使用しており、この1年間の気象状態が長期間の気象状態を代表しているかどうかの検討を行った。

2. 気象データの代表性の検討

2.1. 検定方法

風向出現頻度及び風速出現頻度について,敷地内B点の標高 150m における 10年間(平成 20年4月~平成 30年3月)及び敷地内A点の標高 57m における 10年間(平成 20年4月~平成 30年3月)の資料により検定を行った。検定法は,不良標本の棄却検定に関するF分布検定の手順に従った。

検定に用いた観測記録

敷地内B点(第1図) (標高150m, 地上高127m)(排気筒高風) 敷地内A点(第1図) (標高57m, 地上高10m)(地上風)

○ 気象資料の統計期間

統計年:平成20年4月~平成30年3月

検定年:平成30年4月~平成31年3月

2.2. 検定結果

平成30年度気象データの検定結果を第1表及び第2表に示す。また,棄却検定表を第3表~第6表に示す。

排気筒高風の検定結果において、有意水準5%で棄却された項目は1項目で あることから、検定年が長期間の気象状態を代表していると判断した。

なお、気象データの代表性が失われていると判断した昭和 57 年の検定結果 については、「別紙 1 昭和 57 年気象データの検定結果について」に示すとお りである。

第1表 異常年検定結果(排気筒高風)

検定年	観測項目	検定結果	
平成 30 年度	風向	1項目棄却	Ъ
平成 30 平及	風速	0項目棄却	良

第2表 異常年検定結果(地上風)

検定年	観測項目	棄却項目	検定結果		
平成 30 年度	風向	0項目棄却	良		
平成 30 年度	風速	0項目棄却	尺		

第3表 棄却檢定表 (風向) (平成30年度)

檢定年:數地内B点(標高150m, 地上高127m) 平成30年4月~平成31年3月

統計年:敷地内B点(標高150m,地上高127m)平成20年4月~平成30年3月測計年:敷地内B点(標高150m,地上高127m)平成50年4月~平成30年3月 測定器:ドップラーソーダ(B点,平成18年10月以降)

1111	刊た	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0
限界	下限	11.24	4.42	2.51	1.10	1.09	0.77	1.30	2.19	9.68	9.11	2.96	2.04	3.05	5.21	4.76	9.32	1.80
莱却限界	上限	20.21	7.63	4.97	2.51	2.15	2.37	2.31	5.27	13.83	13.99	4.96	3, 48	7.17	8.79	7.70	15.82	4.32
検定年	平成30年度	12.49	5.50	2.93	1.71	1.25	1.49	1.93	4.11	12.55	11.20	3, 46	2.48	5.08	8, 40	8.89	12.72	3.83
计光讯	干沙順	15.72	6.03	3.74	1.81	1.62	1.57	1.81	3, 73	11.76	11.55	3,96	2.76	5.11	7.00	6.23	12.57	3,06
平成	29年度	17.36	6.36	3.52	1.68	1.40	1.48	1.91	3, 46	12.13	11.98	4.16	2.87	5.00	6.65	5.95	10.21	3.90
平成	28年度	19.17	6.59	3.45	1.57	1.54	1.20	1.47	2.62	11.23	12.25	3,83	2.37	3.89	7.54	6.90	11.64	2.73
平成	27年度	16.91	5.53	3.01	1.68	1.79	1.65	1.65	4.04	13.37	11.24	3.57	2.74	3.97	5.99	5.55	13.54	3.75
平成	26年度	16.70	5.17	3.25	1.63	1.33	1.22	1.60	3,68	12.98	11.51	3,85	2.41	4.42	6.77	6.31	13.58	3, 58
平成	11	16.02	5.70	3.62	1.75	1.59	1.44	1.93	3.22	10.84	12.34	4.04	2.84	4.76	6.02	7.01	13.83	3.05
平成	24年度	14.04	6.50	3.64	1.48	1.78	1.60	1.85	3, 36	11.69	12.32	3.60	2.61	5.38	8.61	7.13	11.52	2.90
平成	23年度	14.07	5.99	3.61	1.63	1.30	1.31	1.84	4.06	11.93	11.59	4.12	3.18	6.17	7.08	5.84	13.45	2.82
平成	22年度	12.77	5.35	4.39	2.29	1.88	2.29	2.24	4.13	10.70	12.05	4.90	3.10	6.12	6.96	5.74	12.04	3.04
平民	21年度	15.03	7.38	4.43	2.06	1.88	1.51	1.72	3,65	11.15	11.36	4.09	3.05	6.19	7.15	5.44	11.44	2.48
平	20年度	15.15	5.69	4.50	2.30	1.74	1.95	1.84	5.04	11.56	8.85	3,40	2.40	5.19	7.22	6.40	14.44	2.32
統計年	風向	N	NNE	NE	ENE	Ħ	ESE	SE	SSE	S	NSS	SW	WSW	W	WNW	NW	NNW	CALM

棄却檢定表(風速)(平成30年度) 第4表

:3月 検定年:敷地内B点(標高150m,地上高127m)平成30年4月~平成31年3月 統計年:敷地内B点

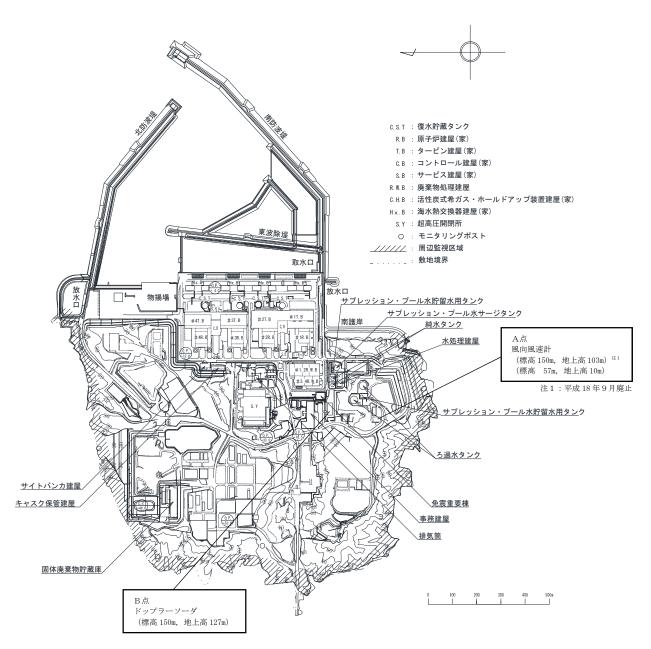
測定器:ドップラーソーダ (B点, 平成18年10月以降)

٠.)	İ
#	
30	Ī
松	,
F)	1
7	-
Ē	2
ਚ	1
111	١
平成20年4月~平成30年3	1
松	1
1	,
	3
Œ	
地上高127m)	,
ᄪ	
1444	,
<u>~</u>	1
苯	
1,	
O	;
12	
(標高150m	1
丰	-1
ن	1
1∏≦	

¥.	刊作	0	0	0	0	0	0	0	0	0	0	C
限界	下限	1.80	7.94	10.00	10.66	10.13	9.00	8.74	6.26	4.32	2.76	4,65
棄却限界	上限	4.32	14.33	16.02	15.28	12.93	11.89	10.57	8.92	8.30	6.31	14, 87
検定年	平成30年度	3.83	10.98	13.12	11.52	11.25	10.40	9.30	8.25	6.25	4.58	10, 52
计扩迁		3.06	11.14	13.01	12.97	11.53	10.45	9.65	7.59	6.31	4.54	97.6
平及	29年度	3,90	11.96	13.18	11.98	11.34	10.33	9.42	7.95	5.91	4.30	9, 74
出	28年度	2.73	9.72	10.65	12.32	11.00	10.38	10.46	8.28	7.16	5.06	12, 23
平限	27年度	3.75	10.68	13.02	12.56	12.34	10.93	9.42	7.62	6.77	4,46	8, 44
松	26年度	3.58	13.52	15.07	14.79	11.57	11.08	9.91	6.77	5.06	3.10	5, 54
平成	25年度	3.05	12.19	13.84	14.42	12.07	11.37	9.57	6.70	5.76	3,46	7.58
北京	24年度	2.90	9.65	11.35	12.04	10.32	10.56	9.89	7.95	7.79	4.88	12. 68
出	23年度	2.82	11.01	12.91	12.84	11.97	10.04	9.73	7.75	5.96	4.70	10, 27
出	22年度	3.04	12.46	14.10	13.10	11.87	9.44	9.00	7.21	5.40	4.82	9.56
平及	21年度	2.48	10.49	12.90	12.30	11.21	9.68	9.64	8.24	6.68	5.11	11, 28
平成	20年度	2.32	9.69	13.11	13.36	11.60	10.67	9.49	7.44	6.59	5.48	10, 24
統計年	風速	$0.0 \sim 0.4$	$0.5\sim1.4$	1.5 \sim 2.4	2.5 \sim 3.4	3.5 \sim 4.4	4.5~5.4	$5.5\sim6.4$	6.5 \sim 7.4	7.5~8.4	8.5 \sim 9.4	9.5ULF

棄却檢定表(風向)(平成30年度) 第5表

検定年:敷地内A点(標高57m,地上高10m)平成30年4月~平成31年3月


平成20年4月~平成30年3月	·(A点,平成11年6月以降)
京 (標高57m, 地上高10m)	5器:超音波型風向風速計
統計年:敷地内A点	測定器

ž Į	刊任	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
设界	下限	10.07	0.78	0.95	1.09	0, 36	1.91	1.44	2.06	8.97	4.34	2.55	2.66	2.41	5.24	8.05	12. 18	3.04
棄却限界	下限	14.45	7.40	2.31	3,03	2.50	3,89	3,95	6.23	12.62	11.23	4.42	4.95	6.65	9.28	13.98	17.07	7.92
検定年	平成30年度	10.64	5.61	2.11	2.57	2.03	2.76	2.27	3, 15	10.88	9.24	3, 68	4.16	6.18	5.94	9.52	14.92	4.31
计	十少值	12.26	4.09	1.63	2.06	1.43	2.90	2.70	4.14	10.80	7.79	3, 48	3.81	4.53	7.26	11.02	14.62	5.48
平成	29年度	11.37	6.01	2.23	2.58	2.00	3.29	2.66	3.40	10.98	8.73	3.52	4.74	6.35	6.52	9.10	12.63	3.88
平成	28年度	12.20	6.53	2.01	2.71	1.73	2.52	1.85	2.70	9.47	9.64	3.44	4.39	5.69	6.32	10.29	15.13	3.38
平成	27年度	13.31	4.84	1.72	1.82	1.51	3.68	2.52	3.76	11.10	8.92	3.78	3.67	3.88	6.12	9.24	14.16	5.97
平及	26年度	11.41	4.53	1.67	2.04	1.44	3.19	2.88	3.84	9.75	8.34	3, 45	4.08	4.15	8.00	11.36	14.36	5.52
平及	25年度	13.44	4.21	1.48	2.06	1.28	2.64	2.78	3.26	10.09	8.72	3.67	3.47	3.99	7.13	11.10	14.32	6.35
平成	24年度	12.59	3.67	1.40	1.46	0.97	3.03	2.40	4.37	11.38	8.31	2.79	3.11	3, 49	8.08	11.98	15.06	5.90
平成	23年度	12.30	2.83	1.47	1.66	0.85	2.56	3.42	5.06	11.55	7.17	3, 33	3.66	3.83	6.66	10.78	16.57	6.30
平成	22年度	10.59	2.82	1.46	2.03	1.26	3.10	3.64	5.31	11.25	6.98	4.21	3.91	4.64	7.18	11.77	13.98	5.87
平成	21年度	13.12	2.92	1.52	1.78	1.03	2.58	2.57	4.85	11.66	6.12	3, 63	3, 63	4.41	8.11	11.30	15.36	5.41
平成	20年度	12.27	2.56	1.33	2.46	2.24	2.39	2.25	4.88	10.73	4.94	3.02	3, 45	4.85	8, 48	13.24	14.69	6.21
統計年	風向	N	NNE	NE	ENE	Ε	ESE	SE	SSE	S	NSS	NS	WSW	M	WNW	NW	NNW	CALM

第6表 棄却檢定表 (風速) (平成30年度)

統計年:敷地内A点(標高57m,地上高10m)平成20年4月~平成30年3月 測定器:超音波型風向風速計(A点,平成11年6月以降)

_	_	_	_		_		_	_	_		
刊作	0	0	0	0	0	\circ	0	0	0	0	0
下限	3.04	30.73	27.51	13.49	5.30	1.46	0.34	0.01	00.00	00.00	00.00
上限	7.92	42.27	35.40	16.80	8.43	4.36	1.70	0.81	0.26	0.10	0.17
平成30年度	4.31	34.42	32.81	15.49	7.72	3.43	1.12	0.44	0.11	0.06	0.08
十岁順	5.48	36.50	31.46	15.14	6.87	2.91	1.02	0.41	0.13	0.04	0.04
29年度	3,88	34.50	33.40	14.79	7.33	3.64	1.43	0.77	0.15	0.08	0.02
28年度	3, 38	30.82	34.91	16.20	8.18	4.10	1.47	0.55	0.24	0.06	0.08
27年度	5.97	35.90	32.60	15.57	5.84	2.81	0.99	0.25	0.03	0.03	0.00
26年度	5.52	38.50	30.87	15.02	6.24	2.40	0.91	0.42	0.10	0.01	0.00
25年度	6.35	36.27	31.19	13.93	7.11	3.26	1.20	0.50	0.15	0.02	0.02
24年度	5.90	36.74	30.13	15.32	7.19	3.04	0.92	0.39	0.11	0.07	0.17
23年度	6.30	38.73	29.91	14.38	6.54	2.71	0.92	0.34	0.08	0.02	0.06
22年度	5.87	38.94	30, 40	14.90	6.81	2.18	0.57	0.23	0.09	0.00	0.01
21年度	5.41	36.94	31.16	16.01	7.03	2.33	0.71	0.22	0.14	0.06	0.00
20年度	6.21	37.70	30.01	15.32	6.39	2.63	1.03	0.46	0.18	0.05	0.02
風速	$0.0 \sim 0.4$	$0.5 \sim 1.4$	1.5 \sim 2.4	2.5 \sim 3.4	3.5 \sim 4.4	4.5 \sim 5.4	5.5 \sim 6.4	6.5 \sim 7.4	7.5 \sim 8.4	8.5 \sim 9.4	9.5以上
	20年度 21年度 22年度 23年度 24年度 25年度 26年度 26年度 27年度 28年度 29年度 平均順 平成30年度 上限 7	20年度 21年度 22年度 23年度 26年度 27年度 28年度 28年度 29年度 中沙順 中沙順 中沙順 下限 下限 6.21 5.21 6.31 6.35 6.35 5.57 5.97 3.38 3.88 5.48 4.31 7.92 3.04	20年度 21年度 22年度 23年度 25年度 26年度 27年度 28年度 28年度 29年度 431 下限 下限 6.21 5.21 5.87 6.35 5.52 5.97 3.38 3.88 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 38.50	204年度214年度254年度254年度264年度274年度284年度284年度294年度13.323.323.323.413.313.4<	20年度 21年度 22年度 25年度 26年度 27年度 28年度 28年度 29年度 72年度 28年度 29年度 128年度 29年度 128年度 29年度 128年度 20年度 128年度 20年度 20日度 20日度	204年度 21年度 25年度 25年度 26年度 27年度 28年度 28年度 29年度 平均幅 平均順 平均順 平均順 平均順 平均順 平均順 平均順 平均順 下限 下限 6.21 5.21 5.36 6.35 5.52 5.97 3.88 3.88 5.48 4.31 7.92 3.04 37.70 36.94 38.73 36.74 36.50 36.87 36.87 36.87 36.87 37.49 37.49 37.49 37.41 37.41 37.40 37.49 37.46 37.41 37.41 37.41 37.49 37.49 37.49 37.41 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.42 37.4	20年度 21年度 22年度 25年度 26年度 27年度 28年度 28年度 29年度 平均幅 平均順 平均順 平均順 平均順 平均順 平均順 平均順 下段 下段 下段 6.21 5.21 5.36 5.52 5.97 33.88 5.48 5.48 4.31 7.92 3.04 7 37.70 36.94 38.94 38.73 36.74 36.27 38.50 35.90 30.82 34.50 34.50 36.50 34.50 36.50 <td>204年度224年度234年度254年度264年度274年度274年度274年度274年度274年度274年度274年度274年度274年度274年度274日度<th< td=""><td>200年度 21年度 23年度 24年度 25年度 26年度 27年度 27年度 28年度 29年度 平均順 平均順 平均順 平均間 平均間 下限30 下限 6.21 5.31 5.32 5.33 3.38 5.38 5.48 6.43 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 35.90 30.82 34.50 34.50 34.50 34.50 34.50 34.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 37.50 37.50 37.50 37.50 37.50 37.50 37.50</td><td>20年度 22年度 23年度 25年度 26年度 27年度 28年度 29年度 平均晶 平均晶 平均晶 平均晶 下限 下限 6.21 5.21 5.31 5.52 5.52 5.97 3.38 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 34.50 34.50 37.50</td><td>20年度 21年度 22年度 23年度 25年度 25年度 27年度 28年度 29年度 平均1億 平成30年度 上限 下限 6.21 5.24 5.34 5.52 5.97 3.38 3.88 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 36.50 34.42 4.27 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50</td></th<></td>	204年度224年度234年度254年度264年度274年度274年度274年度274年度274年度274年度274年度274年度274年度274年度274日度 <th< td=""><td>200年度 21年度 23年度 24年度 25年度 26年度 27年度 27年度 28年度 29年度 平均順 平均順 平均順 平均間 平均間 下限30 下限 6.21 5.31 5.32 5.33 3.38 5.38 5.48 6.43 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 35.90 30.82 34.50 34.50 34.50 34.50 34.50 34.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 37.50 37.50 37.50 37.50 37.50 37.50 37.50</td><td>20年度 22年度 23年度 25年度 26年度 27年度 28年度 29年度 平均晶 平均晶 平均晶 平均晶 下限 下限 6.21 5.21 5.31 5.52 5.52 5.97 3.38 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 34.50 34.50 37.50</td><td>20年度 21年度 22年度 23年度 25年度 25年度 27年度 28年度 29年度 平均1億 平成30年度 上限 下限 6.21 5.24 5.34 5.52 5.97 3.38 3.88 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 36.50 34.42 4.27 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50</td></th<>	200年度 21年度 23年度 24年度 25年度 26年度 27年度 27年度 28年度 29年度 平均順 平均順 平均順 平均間 平均間 下限30 下限 6.21 5.31 5.32 5.33 3.38 5.38 5.48 6.43 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 35.90 30.82 34.50 34.50 34.50 34.50 34.50 34.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 34.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 36.50 37.50 37.50 37.50 37.50 37.50 37.50 37.50	20年度 22年度 23年度 25年度 26年度 27年度 28年度 29年度 平均晶 平均晶 平均晶 平均晶 下限 下限 6.21 5.21 5.31 5.52 5.52 5.97 3.38 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 34.50 34.50 37.50	20年度 21年度 22年度 23年度 25年度 25年度 27年度 28年度 29年度 平均1億 平成30年度 上限 下限 6.21 5.24 5.34 5.52 5.97 3.38 3.88 5.48 4.31 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50 36.50 34.42 4.27 7.92 3.04 37.70 36.94 38.94 38.73 36.74 36.27 38.50 30.82 34.50

第1図 気象観測地点

別紙1 昭和57年気象データの検定結果について

1. 検定方法

昭和57年における観測点での風向出現頻度及び風速出現頻度について、標高150mにおける10年間(平成21年4月~平成31年3月)の資料により検定を行った。検定法は、不良標本の棄却検定に関するF分布検定の手順に従った。

○ 検定に用いた観測記録

敷地内A点(第1図) (標高150m, 地上高103m)(排気筒高風)

敷地内B点(第1図) (標高150m, 地上高127m)(排気筒高風)

敷地内A点(第1図) (標高 57m, 地上高 10m)(地上風)

○ 気象資料の統計期間

統計年:平成21年4月~平成31年3月

検定年:昭和57年1月~昭和57年12月

2. 検定結果

検定結果を第1表及び第2表に示す。また,棄却検定表を第3表~第6表に示す。

第1表 異常年検定結果(排気筒高風)

検定年	観測項目	棄却項目	検定結果
昭和 57 年	風向	7項目棄却	不
昭和 57 年	風速	3項目棄却	台

第2表 異常年検定結果(地上風)

検定年	観測項目	棄却項目	検定結果
昭和 57 年	風向	0項目棄却	不
昭和 57 年	風速	10 項目棄却	台`

第3表 棄却檢定表 (風向) (昭和57年)

検定年:敷地内A点(標高150m,地上高103m)昭和57年1月~昭和57年12月

統計年:數地内B点(標高150m, 地上高127m) 平成21年4月~平成31年3月

測定器:超音波式風向風速計 (A点, 平成18年9月まで)ドップラーソーダ (B点, 平成18年10月以降)

Ţ Ţ	刊任	×	0	0	0	0	0	×	×	\circ	×	0	×	×	0	×	0	×
限界	下限	10.36	4.37	2.39	1.17	0.99	0.79	1.30	2.48	9.71	10.71	2.98	2.07	3.04	5.04	3.99	9.53	1.99
棄却限界	上限	20.55	7.65	4.77	2.32	2.16	2, 25	2, 33	4.79	14.00	12.86	4.94	3, 46	7.16	9.19	8.96	15.27	4, 42
検定年	昭和57年	7.59	5.25	2.97	1.73	1.61	1.92	3.37	7.44	12.84	6.87	3.66	3.62	7.31	7.88	11.62	12.90	1.43
订为后	十岁個	15.46	6.01	3.58	1.75	1.57	1.52	1.81	3.63	11.85	11.78	3.96	2.77	5.10	7.12	6.48	12.40	3.21
平成	30年度	12.49	5.50	2.93	1.71	1.25	1.49	1.93	4.11	12.55	11.20	3, 46	2.48	5.08	8.40	8.89	12.72	3.83
平成	29年度	17.36	6.36	3.52	1.68	1.40	1.48	1.91	3, 46	12.13	11.98	4.16	2.87	5.00	6.65	5.95	10.21	3.90
平成	28年度	19.17	6.59	3, 45	1.57	1.54	1.20	1.47	2.62	11.23	12.25	3,83	2.37	3,89	7.54	6.90	11.64	2.73
平成	27年度	16.91	5.53	3.01	1.68	1.79	1.65	1.65	4.04	13.37	11.24	3.57	2.74	3.97	5.99	5.55	13.54	3.75
平成	26年度	16.70	5.17	3.25	1.63	1.33	1.22	1.60	3.68	12.98	11.51	3,85	2.41	4.42	6.77	6.31	13.58	3.58
平成	25年度	16.02	5.70	3.62	1.75	1.59	1.44	1.93	3.22	10.84	12.34	4.04	2.84	4.76	6.02	7.01	13.83	3.05
平成	24年度	14.04	6.50	3.64	1.48	1.78	1.60	1.85	3.36	11.69	12.32	3.60	2.61	5.38	8.61	7.13	11.52	2.90
平成	23年度	14.07	5.99	3.61	1.63	1.30	1.31	1.84	4.06	11.93	11.59	4.12	3.18	6.17	7.08	5.84	13.45	2.82
平成	22年度	12.77	5.35	4.39	2.29	1.88	2.29	2.24	4.13	10.70	12.05	4.90	3.10	6.12	6.96	5.74	12.04	3.04
平成	21年度	15.03	7.38	4.43	2.06	1.88	1.51	1.72	3.65	11.15	11.36	4.09	3.05	6.19	7.15	5.44	11.44	2.48
統計年	風向	N	NNE	NE	ENE	Э	ESE	SE	SSE	S	MSS	MS	MSM	M	MNM	MN	MNN	CALM

棄却検定表(風速)(昭和57年) 第4表

検定年:敷地内A点(標高150m,地上高103m)昭和57年1月~昭和57年12月

統計年:敷地内B点(標高150m,地上高127m)平成21年4月~平成31年3月

平成18年9月まで) ドップラーソーダ (B点, 平成18年10月以降) 測定器:超音波式風向風速計(A点,

1	刊任	×	×	\circ	\circ	×	\circ	\circ	\circ	\circ	\circ	\circ
限界	下限	1.99	8.30	10.00	10.27	10.08	8.99	8.68	6.26	4.30	2.85	4.65
兼当	下限	4.42	14.23	16.02	15.30	12.91	11.85	10.58	9.08	8.25	6.04	14.91
検定年	昭和57年	1.43	8.01	11.21	13.20	13.08	11.75	10.08	7.98	6.98	5.28	11.01
计扩迁	十少順	3.21	11.26	13.01	12.79	11.49	10.42	9.63	7.67	6.27	4, 45	9.78
平及	30年度	3, 83	10.98	13.12	11.52	11.25	10.40	9.30	8.25	6.25	4.58	10.52
平及	29年度	3.90	11.96	13.18	11.98	11.34	10.33	9.42	7.95	5.91	4.30	9.74
平及	28年度	2.73	9.72	10.65	12.32	11.00	10.38	10.46	8.28	7.16	5.06	12.23
平及	27年度	3.75	10.68	13.02	12.56	12.34	10.93	9.42	7.62	6.77	4.46	8.44
平及	26年度	3.58	13.52	15.07	14.79	11.57	11.08	9.91	6.77	5.06	3.10	5.54
平成	25年度	3.05	12.19	13.84	14.42	12.07	11.37	9.57	6.70	5.76	3.46	7.58
平成	24年度	2.90	9.65	11.35	12.04	10.32	10.56	9.89	7.95	7.79	4.88	12.68
平成	23年度	2.82	11.01	12.91	12.84	11.97	10.04	9.73	7.75	5.96	4.70	10.27
平成	22年度	3.04	12.46	14.10	13.10	11.87	9.44	9.00	7.21	5.40	4.82	9.56
平成	21年度	2.48	10.49	12.90	12.30	11.21	9.68	9.64	8.24	6.68	5.11	11. 28
統計年	風速	$0.0 \sim 0.4$	$0.5 \sim 1.4$	1.5 \sim 2.4	2.5 \sim 3.4	3.5 \sim 4.4	4.5 \sim 5.4	5.5 \sim 6.4	6.5 \sim 7.4	7.5 \sim 8.4	8.5 \sim 9.4	9.5以上

第5表 棄却檢定表 (風向) (昭和57年)

検定年:敷地内A点(標高57m,地上高10m)昭和57年1月~昭和57年12月

統計年:敷地内A点(標高57m,地上高10m)平成21年4月~平成31年3月 測定器: 風車型風向風速計(A点,平成11年5月まで)

超音波型風向風速計(A点,平成11年6月以降)

1	刊作	0	\circ	0	\circ	0	0	0	0	0	0	0	0	0	\circ	0	0	0
限界	下限	9.60	1.18	0.99	1.07	0.43	2.03	1.45	1.86	8.99	5.58	2.69	2.75	2.20	5.04	8.15	12.20	2.79
棄却限界	下限	14.60	7.61	2, 42	3.07	2.39	3.84	3,95	6.08	12.64	10.86	4.41	5.01	7.12	8.97	13.14	17.10	7.79
検定年	昭和57年	13.69	3.62	1.78	2.97	0.80	2.23	3.27	4.68	11.96	6.05	3.60	3.09	3.74	7.89	11.68	13.53	5.40
计为任	十少個「	12.10	4.40	1.71	2.07	1.41	2.94	2.70	3.97	10.81	8. 22	3.55	3.88	4.66	7.00	10.65	14.65	5.29
平成	30年度	10.64	5.61	2.11	2.57	2.03	2.76	2.27	3.15	10.88	9.24	3.68	4.16	6.18	5.94	9.52	14.92	4.31
平成	29年度	11.37	6.01	2.23	2.58	2.00	3.29	2.66	3.40	10.98	8.73	3.52	4.74	6.35	6.52	9.10	12.63	3.88
平成	28年度	12.20	6.53	2.01	2.71	1.73	2.52	1.85	2.70	9.47	9.64	3.44	4.39	5.69	6.32	10.29	15.13	3, 38
平成	27年度	13.31	4.84	1.72	1.82	1.51	3.68	2.52	3.76	11.10	8.92	3.78	3.67	3.88	6.12	9.24	14.16	5.97
平成	26年度	11.41	4.53	1.67	2.04	1.44	3.19	2.88	3.84	9.75	8.34	3, 45	4.08	4.15	8.00	11.36	14.36	5.52
平成	25年度	13.44	4.21	1.48	2.06	1.28	2.64	2.78	3, 26	10.09	8.72	3.67	3, 47	3.99	7.13	11.10	14.32	6.35
平成	24年度	12.59	3.67	1.40	1.46	0.97	3.03	2.40	4.37	11.38	8.31	2.79	3.11	3.49	8.08	11.98	15.06	5.90
平成	23年度	12.30	2.83	1.47	1.66	0.85	2.56	3.42	5.06	11.55	7.17	3, 33	3.66	3.83	99 '9	10.78	16.57	6.30
平成	22年度	10.59	2.82	1.46	2.03	1.26	3.10	3.64	5.31	11.25	6.98	4.21	3.91	4.64	7.18	11.77	13.98	5.87
平成	21年度	13.12	2.92	1.52	1.78	1.03	2.58	2.57	4.85	11.66	6.12	3.63	3.63	4.41	8.11	11.30	15.36	5.41
統計年	風向	N	NNE	NE	ENE	Ε	ESE	SE	SSE	S	MSS	SW	MSM	M	WNW	NW	MNN	CALM

棄却検定表(風速)(昭和57年) 第6表

検定年:敷地内A点(標高57m,地上高10m)昭和57年1月~昭和57年12月 統計年:敷地内A点(標高57m,地上高10m)平成21年4月~平成31年3月

測定器: 風車型風向風速計 (A点, 平成11年5月まで) 超音波型風向風速計 (A点, 平成11年6月以降)

1	刊作	0	×	×	×	×	×	×	×	×	×	×
限界	下限	2.79	30, 31	27.88	13.49	5.37	1.52	0.34	0.01	0.00	0.00	0.00
棄却限界	上限	7.79	42.05	35.60	16.83	8.63	4, 47	1.71	0.81	0.25	0.10	0.17
検定年	昭和57年	5.40	15.96	26.60	20.40	12.30	8.27	4.87	2.89	1.54	0.71	1.05
订为后	十少順	5.29	36.18	31.74	15.16	7.00	2.99	1.03	0.41	0.12	0.04	0.04
平成	30年度	4.31	34.42	32.81	15.49	7.72	3, 43	1.12	0.44	0.11	0.06	0.08
平成	29年度	3.88	34.50	33, 40	14.79	7.33	3.64	1.43	0.77	0.15	0.08	0.02
平成	28年度	3, 38	30.82	34.91	16.20	8.18	4.10	1.47	0.55	0.24	0.06	0.08
平成	27年度	5.97	35.90	32.60	15.57	5.84	2.81	0.99	0.25	0.03	0.03	0.00
平成	26年度	5.52	38.50	30.87	15.02	6.24	2.40	0.91	0.42	0.10	0.01	0.00
平成	25年度	6.35	36.27	31.19	13.93	7.11	3.26	1.20	0.50	0.15	0.02	0.02
平成	24年度	5.90	36.74	30.13	15.32	7.19	3.04	0.92	0.39	0.11	0.07	0.17
平成	23年度	6.30	38.73	29.91	14.38	6.54	2.71	0.92	0.34	0.08	0.02	0.08
平成	22年度	5.87	38.94	30.40	14.90	6.81	2.18	0.57	0.23	0.00	0.00	0.01
平成	21年度	5.41	36.94	31.16	16.01	7.03	2.33	0.71	0.22	0.14	0.06	0.00
統計年	風速	$0.0 \sim 0.4$	0.5 \sim 1.4	1.5 \sim 2.4	2.5 \sim 3.4	3.5 \sim 4.4	4.5 \sim 5.4	5.5 \sim 6.4	6.5 \sim 7.4	7.5 \sim 8.4	8.5 \sim 9.4	9.5以上
					_	_				_	_	_

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料
資料番号		添付3-4	
提出年月日		令和2年11月26	5日

福島第二原子力発電所 1号,2号,3号及び4号炉 廃止措置に係る被ばく評価に使用する 気象条件について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	ĺ	はし	じめに	ح 1	-
2.	Į.	気象	泉観測	則及び気象条件1	_
	2. 1		敷地	!における気象観測1	_
	2	. 1.	1.	気象観測点の状況1	_
	2	. 1.	2.	気象観測項目 2	_
	2	. 1.	3.	気象機器 2	_
	2. 2		敷地	1における気象観測結果3	_
	2	. 2.	1.	敷地を代表する風 3	_
	2	. 2.	2.	大気安定度 4	_
	2	. 2.	3.	観測結果からみた敷地の気象特性 5	_
	2. 3		安全	解析に使用する気象条件 5	_
	2	. 3.	1.	観測期間の気象資料の代表性の検討 5	_
	2	. 3.	2.	大気拡散の計算に使用する放出源の有効高さ 6	_
	2	. 3.	3.	大気拡散の評価に使用する気象条件 6	_

1. はじめに

被ばく評価に用いる気象データについては、敷地内において観測した平成30年4月から平成31年3月までの1年間の気象データを使用している。以下に気象観測方法、気象観測結果及び安全解析に使用する気象条件を示す。

2. 気象観測及び気象条件

2.1. 敷地における気象観測

発電所の安全解析に使用する気象条件を決める際の資料を得るため、「発電用原子炉施設の安全解析に関する気象指針」(以下「気象指針」という。)に基づき発電所敷地内で、風向、風速、日射量、放射収支量等の観測を行っている。

廃止措置計画認可申請書では、平成30年4月から平成31年3月までの観測 データを使用した。

以上の観測に使用した気象機器の種類,観測位置及び観測期間を第 2.1-1 表に、観測設備配置を第 2.1-1 図及び第 2.1-2 図に示す。

2.1.1. 気象観測点の状況

- (1) 排気筒高さ 120m (標高 150m) 付近の風向風速を代表する観測点
 - a. A点(昭和54年8月~平成18年9月)

排気筒高さ付近を代表する風向風速の資料を得るため、敷地内の 丘陵地 (標高約 47m) に高さ約 103m (標高約 150m) の鉄塔を設置し、 風向風速の観測を行った。

b. B点(平成18年10月~現在)

排気筒高さ付近を代表する風向風速の資料を得るため、敷地内の 事務建屋屋上にドップラーソーダを設置し、風向風速の観測を行っ た。この観測点は、周囲の障害物の影響を受けることがなく、排気 筒高さ付近の風向風速を代表している。

(2) 地上風を代表する観測点 (A点)

敷地を代表する地上風の資料を作るため、敷地内丘陵の平地(標高約47m)に高さ約10m(標高約57m)の鋼板柱を設置し、観測を行った。鋼板柱の周囲には障害物がなく平坦地であるので敷地の地上風を十分代表する地点である。

(3) 大気安定度を求めるための風速,日射量及び放射収支量の観測点(A点) 大気安定度を求めるためには,平地での風速,日射量,放射収支量が 必要である。風速については,地上風を代表する観測点で測定した風速 を使用する。

日射量及び放射収支量については、敷地内丘陵の平地(標高約 47m) に設置した露場で行った。

2.1.2. 気象観測項目

風向, 風速: A点, B点

日 射 量:A点

放射収支量: A点

(各観測点の位置については, 第2.1-1 図及び第2.1-2 図参照)

2.1.3. 気象機器

気象機器は第2.1-1表に示しているが、「気象業務法」に基づく気象庁 検定を受けたものである。

なお、放射収支計及びドップラーソーダは気象庁の検定項目にないた

め、放射収支計及びドップラーソーダについては年に1回程度の較正を 受けている。

2.2. 敷地における気象観測結果

2.2.1. 敷地を代表する風

敷地の地上風を代表する観測点(第2.1-1 図及び第2.1-2 図, A点)標高 57m (地上高 10m)の高さにおける1年間の観測結果を以下に示す。なお, 風向及び風速の観測値を統計処理するにあたって, 風速が 0.5m/s未満のものは静穏として取り扱っている。

(1) 風向

標高 57m (地上高 10m) における年間及び月別の風配図を第 2.2-1 図から第 2.2-3 図に示す。

標高 57m における風向分布は、年間を通じ北から北北西寄りの風及 び南の風が多くなっている。

標高 57m における年間の低風速 (0.5~2.0m/s) 時の風配図を第 2.2 -4 図に示す。

標高 57m における低風速時の風向分布は,年間を通じ北西及び北北西の風が多くなっている。

(2) 風速

標高 57m (地上高 10m) における,年間及び月別の風速別出現頻度並びに年間の風速別出現頻度累積を第 2.2-5 図から第 2.2-8 図に示す。

標高 57m における, 年平均風速は約 2.1m/s であり, 0.5~2.4m/s の 風速が多くなっている。 また,第2.2-1 図に示すとおり,標高57mにおける静穏状態(風速0.5m/s未満)の年間出現頻度は,4.3%である。

(3) 同一風向継続時間

標高 57m (地上高 10m) における年間の同一風向の継続時間別出現回数を第 2.2-1 表に示す。

標高 57m において長期継続する傾向の強い風向は、南、南南西、北及び北北西であり、最長の継続時間は、風向が南の場合である。各風向とも継続時間は9時間以内がほとんどであり、全体で 99.5%を占めている。

また、標高 57m における静穏状態の継続時間は、4時間以内がほとんどである。

2.2.2. 大気安定度

(1) 大気安定度の分類と出現頻度

日射量,放射収支量及び地上高 10m (標高 57m) の風速の観測資料を 基に「気象指針」に従って大気安定度の分類を行った。

なお、大気安定度分類中「一」の箇所はG型として分類した。

年間及び月別の大気安定度出現頻度を第2.2-9図に,並びに標高57m(地上高10m)における年間の大気安定度別風配図を第2.2-10図に示す。

年間の出現頻度は、A型からC型は28.3%、D型(C-D型も含む)は37.2%、E型からG型は34.5%となっている。

D型は年間を通じて出現頻度が多く、A型からC型は3月から10月にかけて比較的多くなっており、E型からG型は10月から3月にかけ

て多くなっている。

標高 57m における大気安定度別の風向出現頻度は、A型からC型のときは南、D型(C-D型も含む)のときは北北西から北及び南西から南、E型からG型のときは北北西から北西寄りの風が多くなっている。大気安定度の継続時間別出現回数を第 2.2-2 表に示す。

A+B+C型, D型, E+F+G型が 10 時間以上継続する頻度は, それぞれ 0.1%, 2.3%, 1.4%となっている。

2.2.3. 観測結果からみた敷地の気象特性

敷地における気象観測資料を解析した結果によると,敷地の気象特性 として次のような点が挙げられる。

- (1) 風向は北から北北西寄りの風及び南の風が多く出現している。
- (2) 静穏が発生しても、それが継続することは少ない。
- (3) 大気安定度は、D型の出現頻度が多い。

2.3. 安全解析に使用する気象条件

安全解析に使用する気象条件は、「2.1.敷地における気象観測」に述べた 気象資料を使用し、「気象指針」により求めた。

2.3.1. 観測期間の気象資料の代表性の検討

敷地において観測した平成30年4月から平成31年3月までの1年間の気象資料により安全解析を行うに当たり、観測を行った1年間の気象が、長期間の気象状態を代表しているかどうかの検討を行った。

風向出現頻度及び風速出現頻度について、敷地内B点の標高 150m における 10 年間(平成 20 年 4 月~平成 30 年 3 月)の資料により検定を行っ

た。検定法は、不良標本の棄却検定に関するF分布検定の手順に従った。

その結果を第2.3-1表から第2.3-2表に示すが、標高150mにおいては、有意水準5%で棄却されたものは1項目であった。これは安全解析に使用した観測期間が長期間の気象状態を代表していることを示しており、この期間の気象資料を用いて事故時の線量の計算を行うことは妥当であることを示している。

2.3.2. 大気拡散の計算に使用する放出源の有効高さ

事故時において,燃料集合体の落下では,地上放出とし放出源の有効高さを 0 m とする。

2.3.3. 大気拡散の評価に使用する気象条件

(1) 平常時

廃止措置計画認可申請書では、「解体工事準備期間中に1号炉(2号、3号及び4号炉も同様)から発生する放射性気体廃棄物の種類としては、換気系からの排気が、原子炉運転中と同様に想定される。解体工事準備期間中は、原子炉の運転を終了していること、原子炉の運転を停止してから長期間が経過していること、放射性物質によって汚染された区域の解体工事を行わず、原子炉運転中の施設定期検査時と同等の状態が継続すること、放射性気体廃棄物の管理に必要な放射性廃棄物処理機能、放出管理機能及び性能を有する設備を維持管理することから、放射性気体廃棄物の放出量は、原子炉設置許可申請書に記載の核分裂生成希ガス等の放出量と比べて無視できる程度である。」としている。このため、平常時における放射性気体廃棄物の放出による被ばくは考慮しておらず、平成30年4月から平成31年3月までの1年間の気

象資料を用いて大気拡散の評価に使用するパラメータの算出は実施していない。

(2) 事故時

事故時に放出される放射性物質が、敷地周辺の公衆に及ぼす影響を 評価するに当たって、放射性物質の拡散状態を推定するために必要な 気象条件については、現地における出現頻度からみて、これより悪い条 件がめったに現れないと言えるものを選ばなければならない。

そこで、線量等の評価に用いる放射性物質の相対濃度(以下「 χ/Q 」という。)を、標高 57m における平成 30 年 4 月から平成 31 年 3 月までの 1 年間の観測データを使用して求めた。すなわち、(2.3-5) 式に示すように、風向、風速、大気安定度及び実効放出継続時間を考慮した χ/Q を陸側方位について求め、方位別にその値の小さい方位からの累積度数を年間のデータ数に対する出現頻度(%)として表すことにする。横軸に χ/Q を、縦軸に累積出現頻度をとり、着目方位ごとに χ/Q の累積出現頻度分布を書き、この分布から、累積出現頻度が 97%に当たる χ/Q を方位別に求め、そのうち最大のものを安全解析に使用する相対濃度とする。

ただし、 χ/Q の計算の着目地点は、各方位とも周辺監視区域境界までの距離とする。

$$\chi / Q = \frac{1}{T} \sum_{i=1}^{T} (\chi / Q)_i \cdot \delta_i$$
 (2.3-5)

ここで,

χ/Q : 実効放出継続時間中の相対濃度 (s/m³)

T : 実効放出継続時間(h)

 $(\chi/Q)_i$: 時刻iにおける相対濃度 (s/m^3)

 δ_i : 時刻iにおいて風向が当該方位にあるとき

 $\delta_i = 1$

時刻iにおいて風向が他の方位にあるとき

 $\delta_i = 0$

燃料集合体の落下での $(\chi/Q)_i$ の計算に当たっては、短時間放出であるため、方位内で風向軸が一定と仮定して(2.3-6)式で計算する。

$$(\chi/Q)_i = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_i} exp\left(-\frac{H^2}{2\sigma_{zi}^2}\right)$$
(2.3-6)

ここで,

 σ_{vi} : 時刻iにおける濃度分布の水平方向の拡がりのパラ

メータ (m)

 σ_{zi} : 時刻iにおける濃度分布の高さ方向の拡がりのパラ

メータ (m)

 U_i : 時刻iにおける風速 (m/s)

H:放出源の有効高さ (m)

方位別 χ/Q の累積出現頻度を求めるとき、静穏の場合には風速を0.5m/sとして計算し、その風向は静穏出現前の風向を使用する。

放射性雲からの γ 線による空気カーマについては、空間濃度分布と γ 線による空気カーマ計算モデルを組み合わせた相対線量(以下「D/Q」という。)を χ/Q と同様な方法で求めて使用する。この場合の実効放出継続時間は1時間を使用する。 γ 線による空気カーマ計算には、次式を使用する。

$$D = K_1 \cdot E \cdot \mu_{en} \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} \cdot B(\mu r)$$

$$\cdot \chi(x', y', z') dx' dy' dz'$$

$$\chi(x', y', z') = \frac{Q}{2\pi \cdot \sigma_y \cdot \sigma_z \cdot U} exp\left\{-\left(\frac{{y'}^2}{2\sigma_y^2}\right)\right\}$$

$$\times \left[exp \left\{ -\frac{(z'-H)^2}{2\sigma_z^2} \right\} + exp \left\{ -\frac{(z'+H)^2}{2\sigma_z^2} \right\} \right]$$

ここで

D: 計算地点(x,y,0)における空気カーマ率 $(\mu \text{ Gy/h})$

 K_1 : 空気カーマ率への換算係数 $\left(\frac{\text{dis} \cdot \text{m}^3 \cdot \mu \text{Gy}}{\text{MeV} \cdot \text{Bo} \cdot \text{h}}\right)$

E:γ線の実効エネルギ (MeV/dis)

 μ_{en} : 空気に対する γ 線の線エネルギ吸収係数 (m^{-1})

μ : 空気に対する γ 線の線減衰係数 (m⁻¹)

r: 放射性雲中の点(x', y', z')から計算地点(x, y, 0)まで

の距離 (m)

B(μr) : 空気に対するγ線の再生係数

$$B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^2 + \gamma(\mu r)^3$$

 α , β , γ は γ 線のエネルギ別に与えられる。

 $\chi(x', y', z')$: 放射性雲中の点(x', y', z')における濃度 (Bq/m^3)

Q : 放出率(Bq/s)

U: 放出源高さを代表する風速(m/s)

H: 放出源の有効高さ(m)

 σ_y : 濃度分布 y'方向の拡がりのパラメータ (m)

σ_z : 濃度分布 z'方向の拡がりのパラメータ (m)

以上により、陸側方位について求めた方位別 χ/Q 及びD/Qの累積出現頻度を第 2.3-1 図から第 2.3-8 図に示す。

このうち、燃料集合体の落下の線量評価に用いる χ/Q 及びD/Qは、陸側方位のうち線量が最大となる方位の値を使用する。

以上の燃料集合体の落下の線量評価に用いる χ/Q 及びD/Qを第 2.3 -3表に示す。

第2.1-1表 観測項目一覧表

日見見		観測位置		気象測器	超洲阳崩
配侧填口	場所 ^{注)}	(m) 吳干麻	標高(m)	又は観測方法	电侧规制
風向, 風速	敷地內A点	10	29	風車型風向風速計	昭和 52 年 4 月 ~ 平成 11 年 5 月
風向, 風速	敷地內A点	10	29	超音波式風向風速計	平成 11 年 6 月~継続
風向, 風速	敷地內A点	103	150	超音波式風向風速計	昭和54年8月~平成18年9月
風向, 風速	敷地內B点	127	150	ドップラーソーダ	平成 18 年 10 月~継続
日射量	敷地內A点	1.6	48.6	電気式日射計	昭和 52 年 4 月~継続
放射収支量	敷地内A点	1.5	48.5 (露場)	風防型放射収支計	昭和 52 年 4 月~継続

注)観測場所のA点, B点については第2.1-1図参照

第2.2-1表 同一風向の継続時間別出現回数

観測場所:敷地内A点(標高57m,地上高10m)

(1.8)(2.7)(3.9)(3.4)2. S 类 $15 \times$ (P) 備 10h以上の継続時間 S $13 \times$ 11×2 $^{\circ}$ 10×3 \mathcal{O} $10 \times$ 10h 只以 C ∞ \sim $^{\circ}$ $^{\circ}$ ∞ $^{\circ}$ ∞ 21 5 $^{\circ}$ $^{\circ}$ \sim ω $^{\circ}$ 69 継続時間 CALM NE ENE ESE NNE SSE S SSW SSW WSW WNW MNM SE \mathbb{N} ſΞ 風向

注)()は10h以上継続した時の平均風速 (m/s)

欠測率:0.5%

第2.2-2表 大気安定度の継続時間別出現回数

観測場所:敷地内A地点 (標高 57m, 地上高 10m)

(回)	合計		154	(4.8)	575	(17.9)	368	(11.4)	951	(29.6)	245	(7.6)	332	(10.3)	589	(18.3)	3214	(100.0)		1097	(34.1)	1166	(36.3)
	10h	以上	0	(0.0)	2	(0.1)	0	(0.0)	75	(2.3)	0	(0.0)	П	(0.0)	43	(1.3)	121	(3.8)	•	2	(0.1)	44	(1.4)
	6		0	(0.0)	2	(0.1)	0	(0.0)	10	(0.3)	0	(0.0)	0	(0.0)	25	(0.8)	37	(1.1)	•	2	(0.1)	25	(0.8)
	8		0	(0.0)	7	(0.2)	0	(0.0)	16	(0.5)		(0.0)	П	(0.0)	21	(0.6)	46	(1.4)	•	7	(0.2)	23	(0.7)
	7		4	(0.1)	22	(0.7)	1	(0.0)	19	(0.6)	0	(0.0)	П	(0.0)	21	(0.6)	89	(2.1)	•	27	(0.8)	22	(0.7)
	9		2	(0.1)	25	(0.8)	3	(0.1)	19	(0.6)	0	(0.0)	4	(0.1)	30	(0.9)	83	(2.6)	•	30	(0.9)	34	(1.1)
	2		2	(0.2)	39	(1.2)	10	(0.3)	30	(0.9)	0	(0.0)		(0.0)	35	(1.1)	122	(3.8)	•	99	(1.7)	36	(1.1)
	4		6	(0.3)	54	(1.7)	14	(0.4)	40	(1.2)	4	(0.1)	2	(0.2)	44	(1.4)	172	(5.3)	-	7.7	(2.4)	22	(1.7)
	3		13	(0.4)	94	(2.9)	28	(0.9)	98	(2.7)	10	(0.3)	24	(0.8)	65	(2.0)	320	(10.0)	-	135	(4.2)	66	(3.1)
	2		32	(1.0)	139	(4.3)	70	(2.2)	271	(8.4)	41	(1.3)	29	(1.8)	86	(3.0)	710	(22.1)	•	241	(7.5)	198	(6.2)
	1		87	(2.7)	191	(6.9)	242	(7.5)	385	(12.0)	189	(6.9)	234	(7.3)	207	(6.4)	1535	(47.8)	•	520	(16.2)	630	(19.6)
	継続時間	大気安定度	A		В		Э		D		日		Ш		G		수라			$A \cdot B \cdot C$		$E \cdot F \cdot G$	

欠測率 1.0%

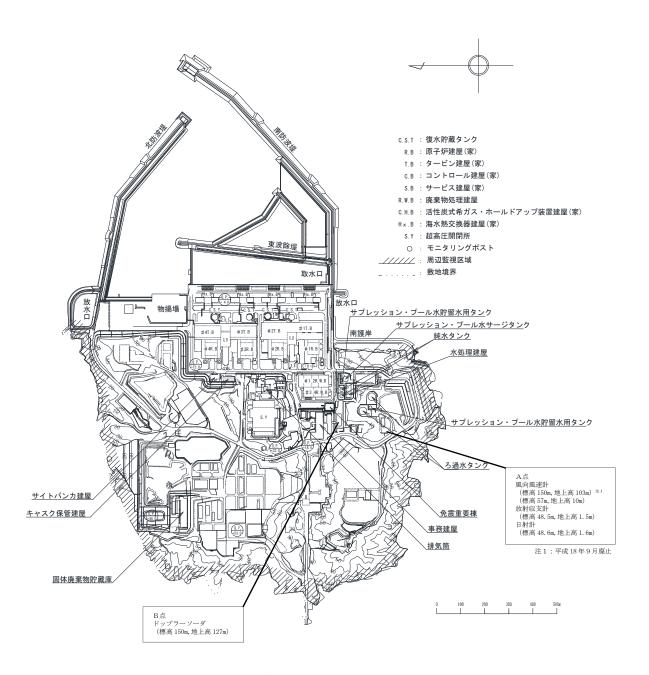
注)()内の数値は出現頻度(%)

第2.3-1表 棄却檢定表(風向)(平成30年度)

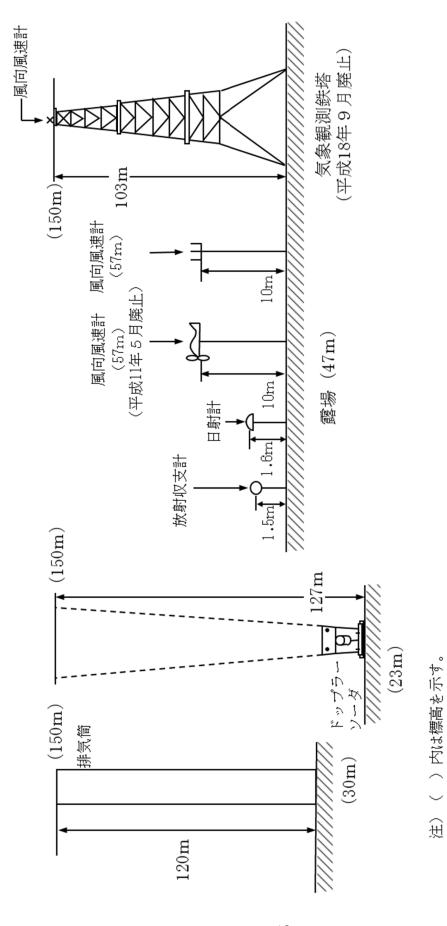
検定年:敷地内B点(標高150m,地上高127m)平成30年4月~平成31年3月統計年:敷地内B点(標高150m,地上高127m)平成20年4月~平成30年3月

		_																
当所		\supset	0	\circ	\circ	\circ	0	\circ	0	\circ	0	0	0	0	\circ	×	0	0
设界	英	11. 24	4.42	2.51	1.10	1.09	0.77	1.30	2.19	9.68	9.11	2.96	2.04	3.05	5.21	4.76	9.32	1.80
棄却限界	실 설 	70. 71	7.63	4.97	2.51	2.15	2.37	2.31	5.27	13.83	13.99	4.96	3, 48	7.17	8.79	7.70	15.82	4.32
検定年近より	十成30年度	12.49	5.50	2.93	1.71	1.25	1.49	1.93	4.11	12.55	11.20	3, 46	2, 48	5.08	8.40	8.89	12.72	3, 83
平均值	C L	15.72	6.03	3.74	1.81	1.62	1.57	1.81	3.73	11.76	11.55	3, 96	2.76	5.11	7.00	6.23	12.57	3,06
平成20年車	X + 67	17.30	6.36	3.52	1.68	1.40	1.48	1.91	3, 46	12.13	11.98	4.16	2.87	5.00	6.65	5.95	10.21	3.90
平成28年單	1	19. 17	6.59	3.45	1.57	1.54	1.20	1.47	2.62	11.23	12.25	3.83	2.37	3.89	7.54	6.90	11.64	2.73
平成27年平	X 5	16.91	5.53	3.01	1.68	1.79	1.65	1.65	4.04	13.37	11.24	3.57	2.74	3.97	5.99	5.55	13.54	3.75
平成%6年		16.70	5.17	3.25	1.63	1.33	1.22	1.60	3.68	12.98	11.51	3,85	2.41	4.42	6.77	6.31	13.58	3, 58
平成25年	X	16.02	5.70	3.62	1.75	1.59	1.44	1.93	3. 22	10.84	12.34	4.04	2.84	4. 76	6.02	7.01	13.83	3, 05
平成2/4年	K S	14.04	6.50	3.64	1.48	1.78	1.60	1.85	3, 36	11.69	12.32	3.60	2.61	5.38	8.61	7.13	11.52	2.90
平成3名年	_	14.07	5.99	3.61	1.63	1.30	1.31	1.84	4.06	11.93	11.59	4.12	3.18	6.17	7.08	5.84	13.45	2.82
平成99年		12.77	5.35	4.39	2.29	1.88	2.29	2.24	4.13	10.70	12.05	4.90	3.10	6.12	6.96	5.74	12.04	3.04
中民21年早		15.03	7.38	4.43	2.06	1.88	1.51	1.72	3.65	11.15	11.36	4.09	3.05	6.19	7.15	5.44	11.44	2.48
平成20年	-	15.15	5.69	4.50	2.30	1.74	1.95	1.84	5.04	11.56	8.85	3, 40	2.40	5.19	7.22	6.40	14.44	2.32
統計年面面	1	N	NNE	NE	ENE	E	ESE	SE	SSE	S	NSS	NS	WSW	W	WNW	MM	NNW	CALM

第2.3-2表 棄却檢定表(風速)(平成30年度)

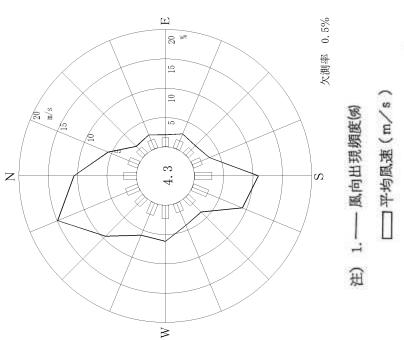

検定年:敷地内B点(標高150m,地上高127m)平成30年4月~平成31年3月統計年:敷地内B点(標高150m,地上高127m)平成20年4月~平成30年3月

(%)


			_			_	_	_				
<u> </u>	刊作	0	0	\circ	0	\circ	\circ	\circ	\circ	0	0	С
限界	下限	1.80	7.94	10.00	10.66	10.13	9.00	8.74	6.26	4.32	2.76	4.65
棄却限界	下限	4.32	14.33	16.02	15.28	12.93	11.89	10.57	8.92	8.30	6.31	14.87
検定年	平成30年度	3, 83	10.98	13.12	11.52	11.25	10.40	9.30	8.25	6.25	4.58	10.52
计光体	十岁順	3.06	11.14	13.01	12.97	11.53	10.45	9.62	7.59	6.31	4.54	9.76
平成	29年度	3,90	11.96	13.18	11.98	11.34	10.33	9.42	7.95	5.91	4.30	9.74
平成	28年度	2.73	9.72	10.65	12.32	11.00	10.38	10.46	8.28	7.16	5.06	12.23
平成	27年度	3.75	10.68	13.02	12.56	12.34	10.93	9.42	7.62	6.77	4.46	8.44
平成	26年度	3, 58	13.52	15.07	14.79	11.57	11.08	9.91	6.77	5.06	3.10	5.54
平成	25年度	3.05	12.19	13.84	14.42	12.07	11.37	9.57	6.70	5.76	3, 46	7.58
平成		2.90	9.62	11.35	12.04	10.32	10.56	9.89	7.95	7.79	4.88	12.68
平成	23年度	2.82	11.01	12.91	12.84	11.97	10.04	9.73	7.75	5.96	4.70	10.27
平成	22年度	3.04	12.46	14.10	13.10	11.87	9.44	9.00	7.21	5.40	4.82	9. 56
平成	21年度	2, 48	10.49	12.90	12.30	11.21	9.68	9.64	8.24	6.68	5.11	11.28
平成	20年度	2.32	9.69	13.11	13, 36	11.60	10.67	9, 49	7.44	6.59	5.48	10.24
統計年	風速	$0.0 \sim 0.4$	$0.5\sim1.4$	1.5 \sim 2.4	2.5 \sim 3.4	3.5 \sim 4.4	4.5 \sim 5.4	5.5 \sim 6.4	6.5 \sim 7.4	7.5 \sim 8.4	8.5 \sim 9.4	9.51X E

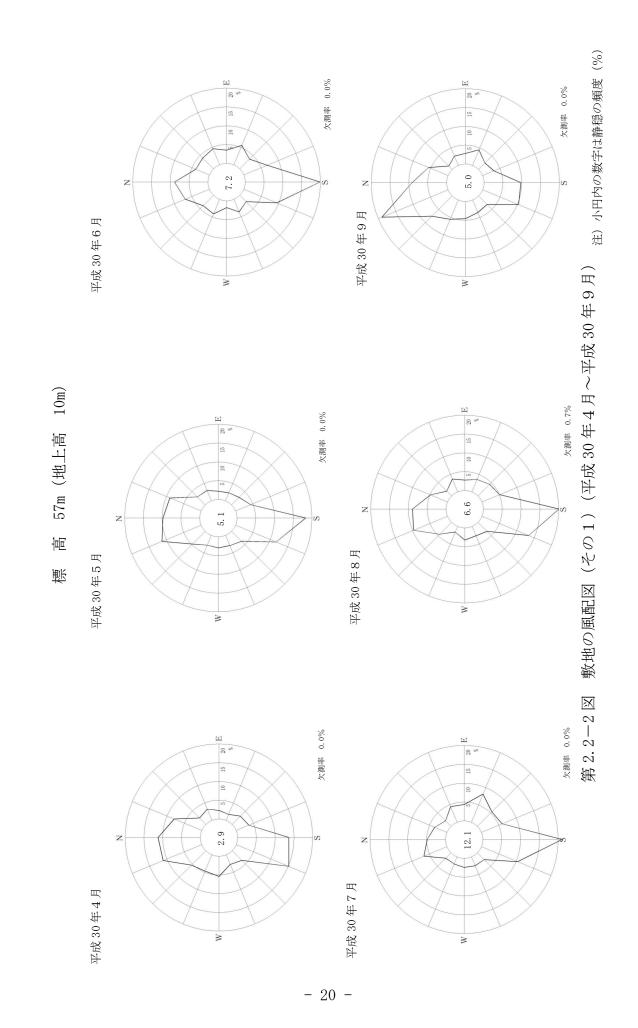
事故時の線量評価に用いる χ/Q 及びD/Q並びに実効放出継続時間 第2.3-3表

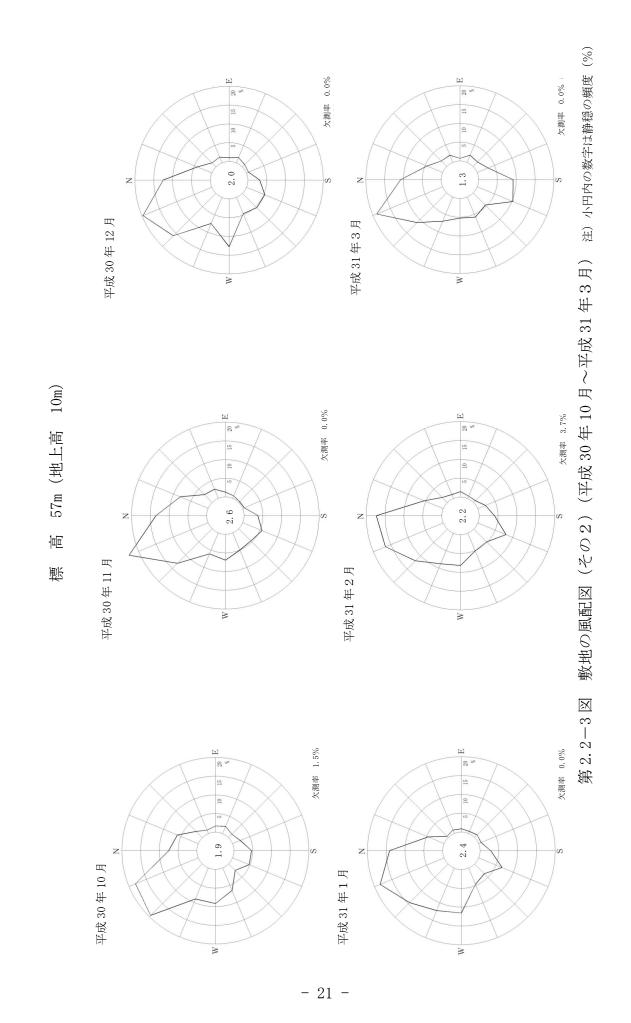
	世才 (実効放出継続	ð/X	D/0
	事成の 建規	曽報	(s/m^3)	(Gy/Bq)
1号炉			9.8×10^{-4}	2.9×10^{-18}
2号炉	燃料集合体の	出	5.7×10^{-4}	2.2×10^{-18}
3号炬	松	1 HT H	4. 0×10^{-4}	1.8×10^{-18}
4号炉			2.8×10^{-4}	1. 5×10^{-18}


第2.1-1図 気象観測設備配置図(その1)

第2.1-2図 気象観測設備配置図 (その2)

第2.2-1図 敷地の風配図(全年)

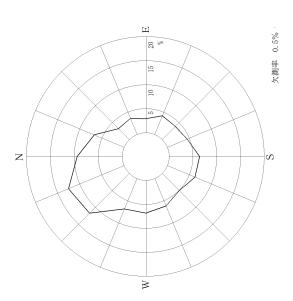




57m (地上高 10m)

恒

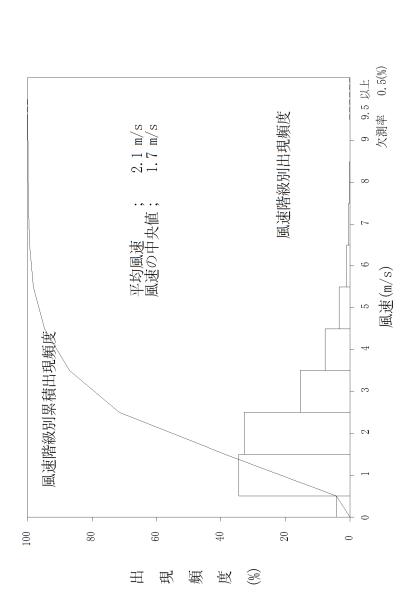
鬃



第2.2-4図 低風速 (0.5~2.0m/s) 時の風配図

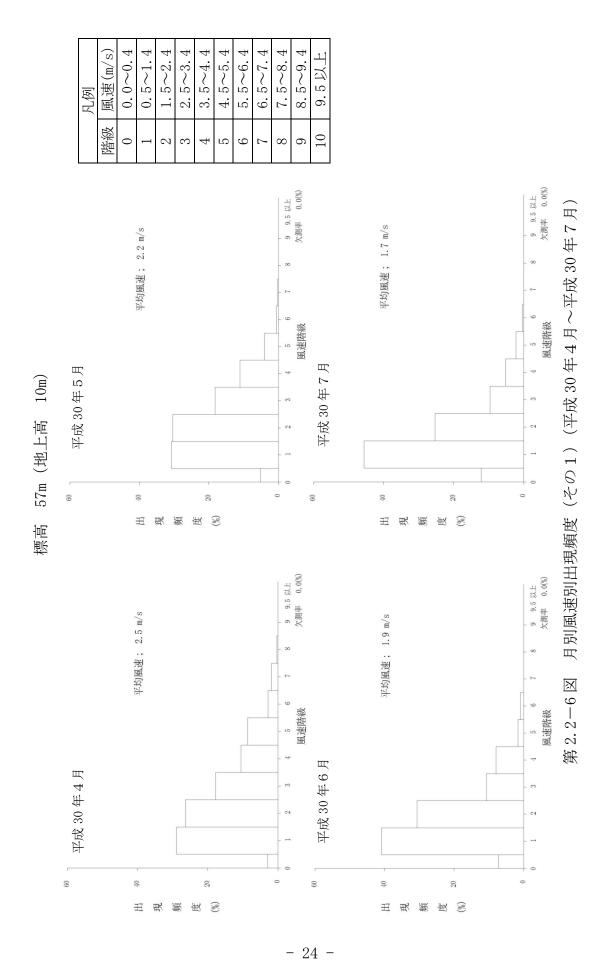
標 高 57m (地上高 10m)

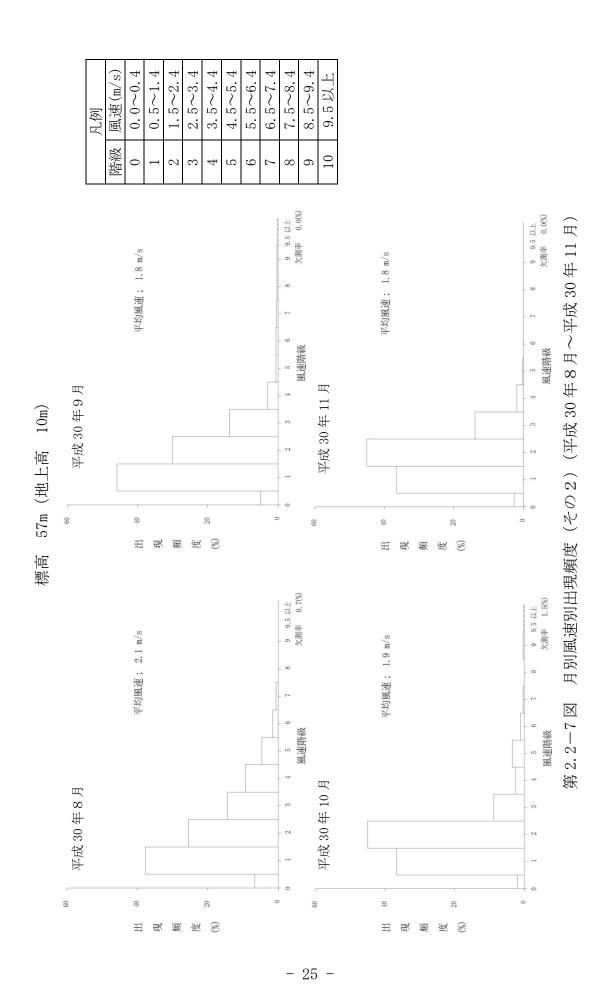
平成30年4月~平成31年3月

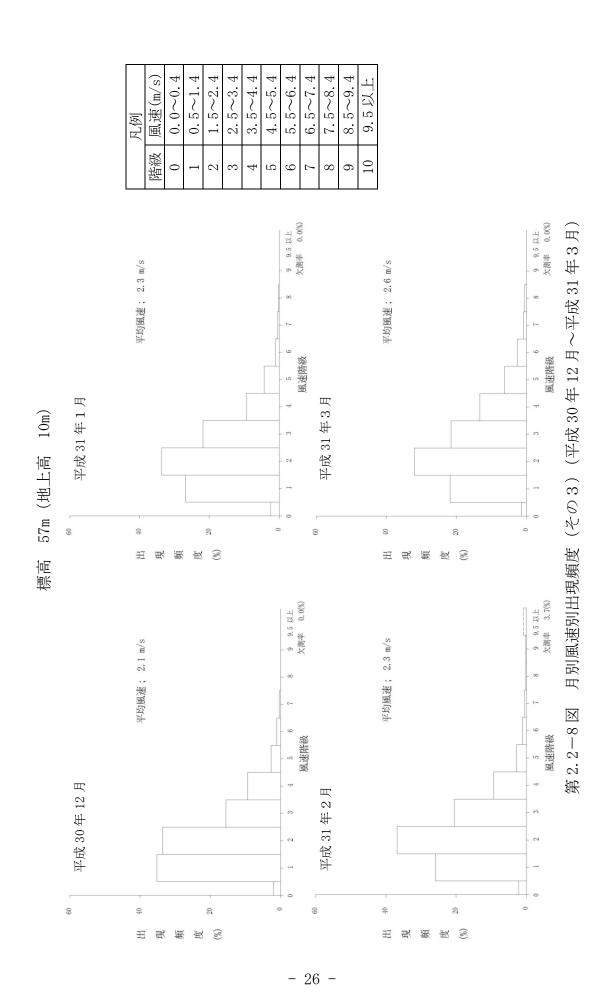


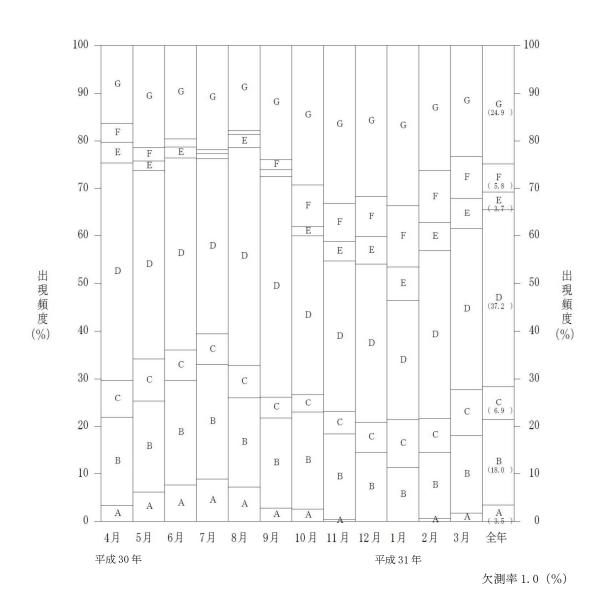
 観測点出現頻度(%)

 標高 57m
 59.2

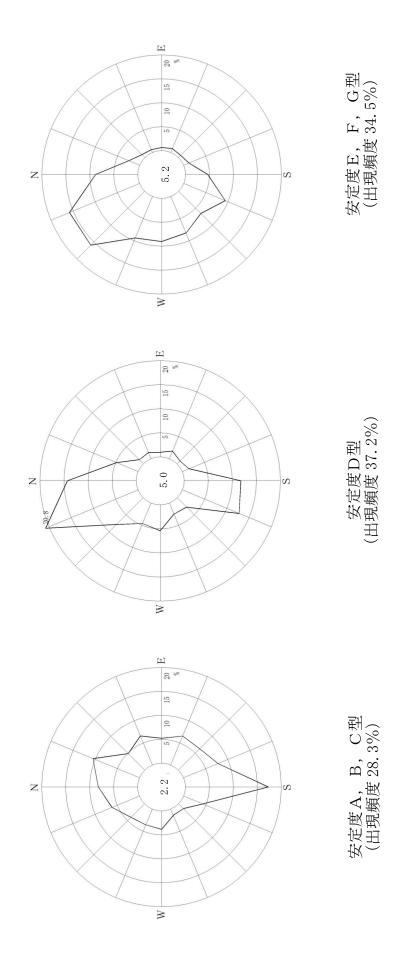

低風速 (0.5~2.0m/s) の出現頻度

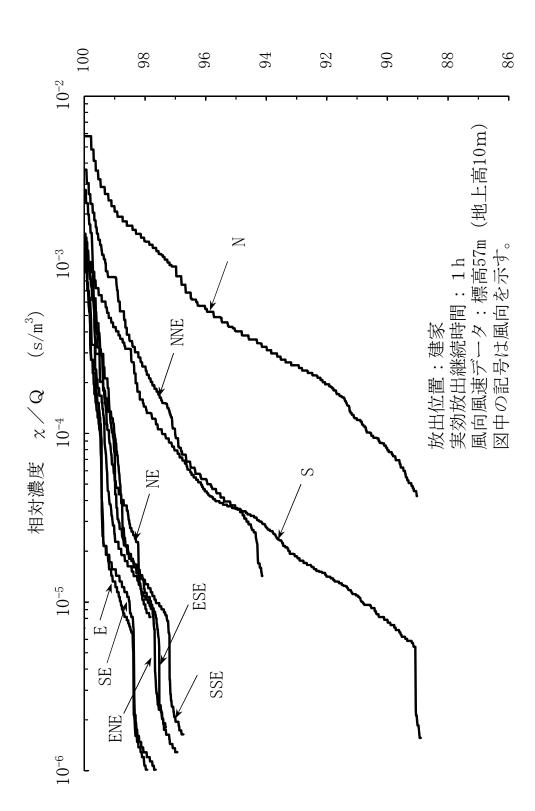

凡例	風速(m/s)	$0.0 \sim 0.4$	$0.5 \sim 1.4$	1.5 \sim 2.4	$2.5 \sim 3.4$	3.5 \sim 4.4	$4.5 \sim 5.4$	$5.5 \sim 6.4$	$6.5 \sim 7.4$	$7.5 \sim 8.4$	$8.5 \sim 9.4$	9.5以上
	階級	0	1	2	3	4	2	9	2	8	6	10

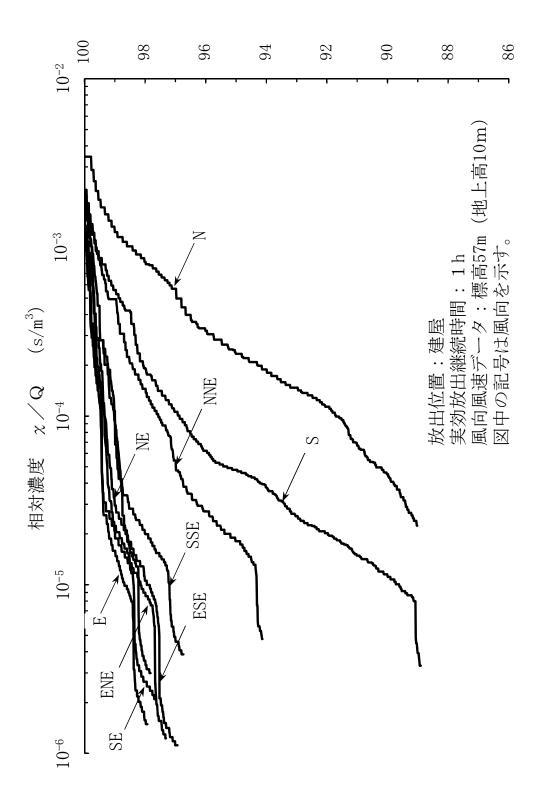



第2.2-5図 年間風速別出現頻度及び風速別出現頻度累積

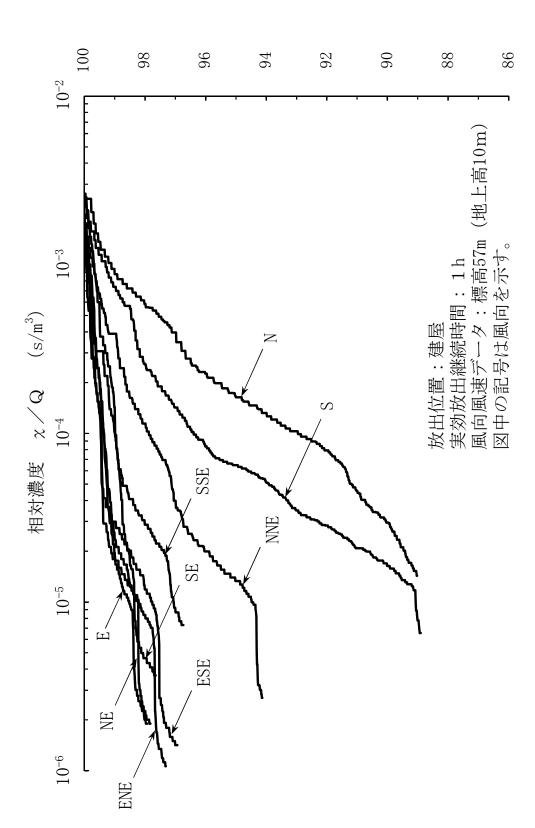
(敷地内A点:標高57m, 地上高10m)

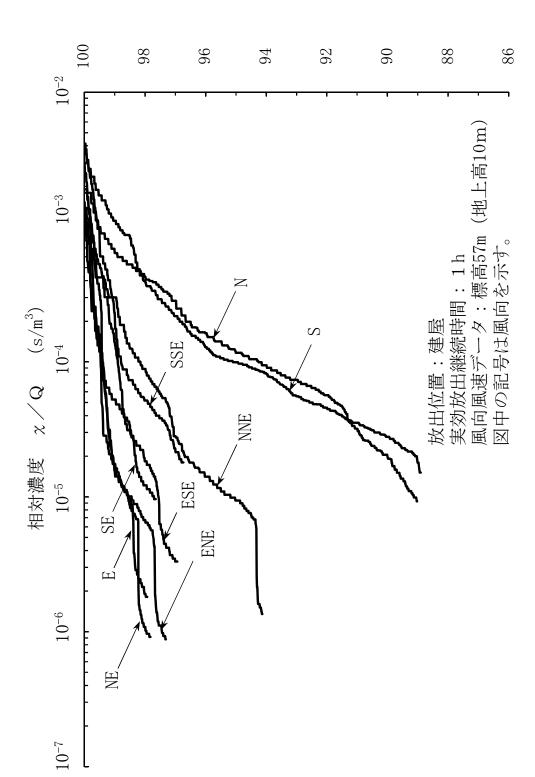


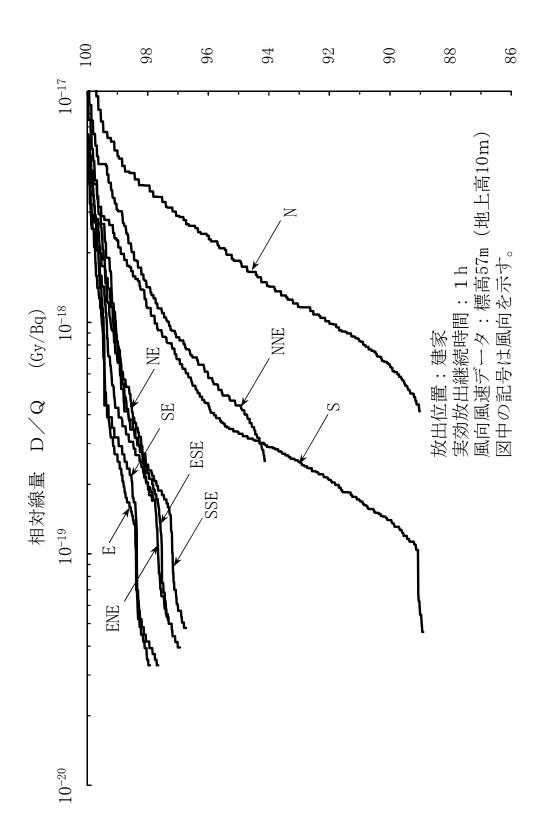

第2.2-9図 年間及び月別大気安定度出現頻度

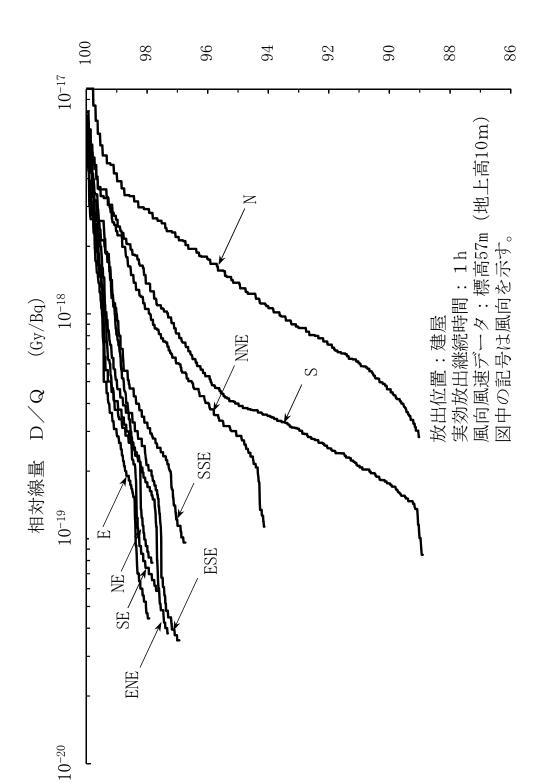

2. 小円内の数字は静穏の頻度(%)

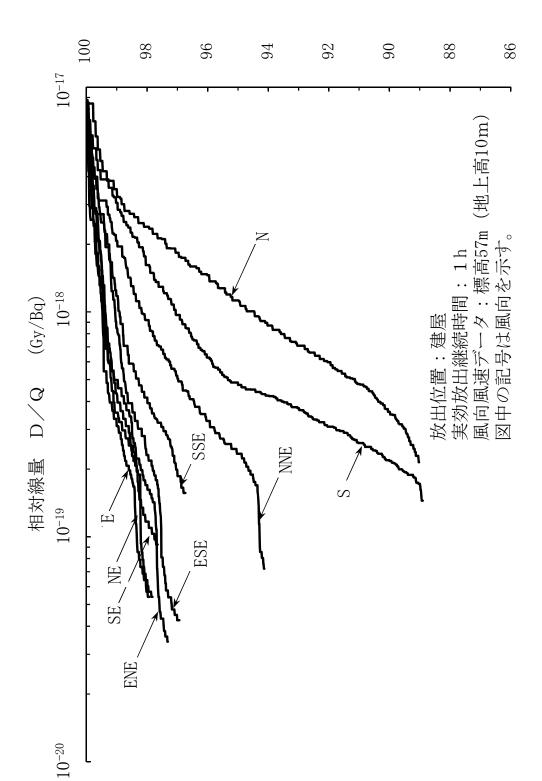
注) 1. 欠測率:1.0%

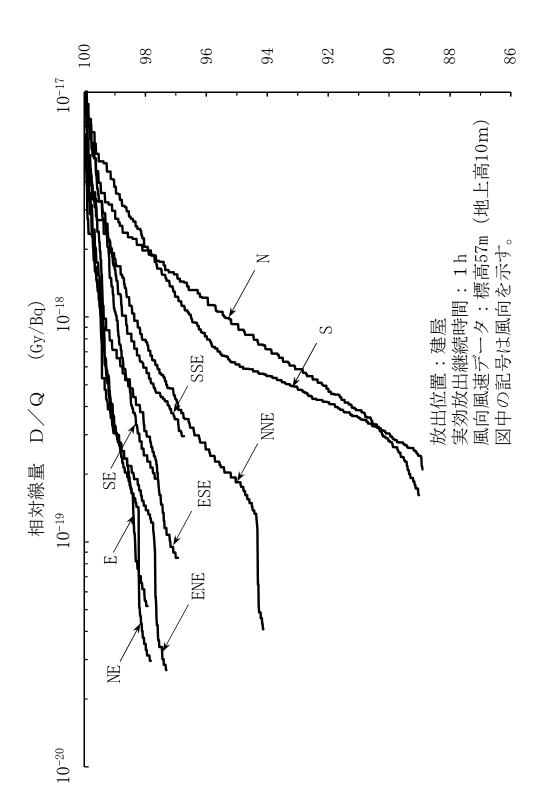

年間大気安定度別風配図 (標高 57m, 地上高 10m) 第2.2-10区


方位別相対濃度 (X/Q) の累積出現頻度 (1号炉燃料集合体の落下) 第2.3-1区


方位別相対濃度(χ/Q)の累積出現頻度(2号炉燃料集合体の落下) 第2.3-2区


方位別相対濃度(χ/Q)の累積出現頻度(3号炉燃料集合体の落下) 第2.3-3区


方位別相対濃度(χ/Q)の累積出現頻度(4号炉燃料集合体の落下) 第2.3-4区


方位別相対線量(D/Q)の累積出現頻度(1号炉燃料集合体の落下)第2.3-5 図

方位別相対線量(D/Q)の累積出現頻度(2号炉燃料集合体の落下) 第2.3-6 図

第2.3-7 図 方位別相対線量(D/Q)の累積出現頻度(3 号炉燃料集合体の落下)

方位別相対線量(D/Q)の累積出現頻度(4号炉燃料集合体の落下) 第2.3-8区

福島第二原子力発電所1号,	2号,	3号及び4号炉	審査資料
資料番号		添付5-1	
提出年月日		令和2年11月26	5日

福島第二原子力発電所 1号,2号,3号及び4号炉 解体工事準備期間に実施する 汚染評価について

令和2年11月 東京電力ホールディングス株式会社

目 次

1.	はじめに 1	-
2.	評価対象 1	-
3.	1号炉に残存する放射性物質の評価方法2	•
3	.1. 放射化汚染 2	-
3	.2. 二次的な汚染 3	
4.	運転中廃棄物の評価方法 5	
5.	代表試料の採取5	

1. はじめに

福島第二原子力発電所1号炉(以下,2号,3号及び4号炉についても同様であり,1号炉とあるものは当該各号炉に読み替える。)に残存する放射性物質及び原子炉の運転中に発生した放射性固体廃棄物については、解体工事準備期間中に、解体対象施設に残存する放射性物質について、核種組成、放射能量及び分布を評価する計画である。

本資料では、今後実施する調査及び評価内容について説明する。

なお,核燃料物質による汚染の分布とその評価方法については,原子炉本体周 辺設備等解体撤去期間に入るまでに廃止措置計画に反映し変更の認可を受ける。

2. 評価対象

1号炉に残存する放射性物質は、その起源によって放射化汚染と二次的な汚染に区分して評価する。

また,原子炉運転中に発生し,貯蔵又は保管された放射性廃棄物(以下「運転中廃棄物」という。)について評価する。

(1) 放射化汚染

原子炉運転中の中性子照射により炉心部,原子炉周辺,使用済燃料貯蔵 設備(使用済燃料プール)の構造材が放射化して生成された放射性物質に よる汚染をいう。

(2) 二次的な汚染

原子炉運転中に、放射化された炉心部等の構造材が冷却材中に溶出した もの、及び冷却材中の腐食生成物が炉心部で放射化されたもの及び核分裂 生成物が、機器、配管等に付着した放射性物質及び建屋(家)の床、壁に 付着又は浸透した放射性物質による汚染をいう。

3. 1号炉に残存する放射性物質の評価方法

3.1. 放射化汚染

1号炉に残存する放射化汚染の放射能は、運転履歴、中性子東及び構造材の元素組成等に基づき、実績のある汎用計算コードを用いた計算によって、生成核種を同定するとともに、生成核種の放射能濃度分布の評価を行う。また、供用を終了した機器、配管等から、代表試料を採取して放射能測定し、評価結果を検証する。

現在、計画している放射化汚染の評価フローを第1図に示す。

(1) 評価対象範囲

放射化汚染の評価を行う対象範囲は以下のとおり。なお,放射化汚染の 対象範囲を第2図に示す。

a. 原子炉周辺

炉心中央から生体遮蔽体の外側までに設置されている機器,配管等及び コンクリート

b. 使用済燃料貯蔵設備(使用済燃料プール)周辺

プール内に設置されている使用済燃料貯蔵ラック, プールライナ及びプ ール側壁コンクリート並びに底面コンクリート

(2) 調査内容

a. 設計情報等の調査

放射化汚染の評価に必要な設計情報等を調査する。

- 設計情報:図面,材料組成,炉出力,ミルシート等
- 運転,使用状況の記録:運転履歴(中性子線の照射履歴)等
- 修理,改造等の記録:改造工事記録等

b. 汚染状況等の調査

放射化汚染の評価に必要な汚染状況等を調査する。

- 元素組成及び放射能分析評価対象範囲内にある機器,配管等から代表試料を採取,分析する。代表試料の採取方法については,「5.代表試料の採取」に示す。
- 汚染状況を把握するための記録:工事記録等

(3) 放射化汚染の評価

放射化汚染の評価は、実績のある汎用計算コードを用いた計算によって 行う。

a. 中性子束分布計算

設計情報(建屋(家)図面等の位置情報,機器,配管及び材料情報)を 基に,幾何形状モデルを作成し,実績のある汎用計算コードを用いて中性 子東分布の計算を行う。

b. 放射能濃度分布計算

中性子東分布,運転履歴,元素組成等の情報から,使用実績のある汎用 計算コードを用いて,放射化汚染の放射能濃度分布計算を行う。

計算結果の検証を行うため、汚染状況等の調査にて取得した放射能分析 結果と比較する。

c. 放射化汚染の放射能の評価

放射能濃度分布計算にて算出した放射能濃度に、構造材の重量を乗じる ことにより放射化汚染の放射能を評価する。

3.2. 二次的な汚染

1号炉に残存する二次的な汚染の放射能は、機器、配管等の外部からの測定、

代表試料を採取しての放射能測定及び放射能計算により,評価を行う。 現在,計画している二次的な汚染の評価フローを第3図に示す。

(1) 評価対象範囲

二次的な汚染の評価を行う対象範囲は,1号炉の管理区域内にある機器, 配管等及び建物コンクリートとする。

(2) 調査内容

- a. 設計情報等の調査
 - 二次的な汚染の評価に必要な設計情報等を調査する。
 - 設計情報:材料組成、炉出力、図面、系統図、配管ルート図等
- b. 汚染状況等の調査
 - 二次的な汚染の評価に必要な汚染状況等を調査する。
 - 線量,汚染等の記録:管理区域区分記録,放射線管理記録等
 - 外部からの測定分析:機器,配管等の外部からγ線の測定を行う
 - 放射能分析

評価対象範囲内にある機器,配管等から代表試料を採取,分析する。 代表試料の採取方法については,「5.代表試料の採取」に示す。

(3) 二次的な汚染の評価

二次的な汚染の評価は、施設を構成する配管及び機器の材料組成を考慮 して腐食生成物等を含む核種組成比を計算又は測定により評価する。

計算による方法としては、冷却材中の放射能濃度と系統内面の接液部の 汚染密度データから冷却材に接液する配管及び機器の接液面の沈着及び 剥離の挙動モデルを用いて評価する。

a. 核種組成計算

原子炉運転中に放射化された炉心構造材が冷却材中に溶出したもの及 び冷却材中の腐食生成物が炉心部で放射化されたもの等の核種組成を,実 績のある汎用計算コードを用いて計算を行う。

上記の計算結果を基に、系統構成を考慮して、各系統の汚染の核種組成 を計算する。

b. 放射能濃度分布計算

汚染状況等の調査で得られた汚染密度,放射能濃度と各系統の汚染の核 種組成より,二次的な汚染の放射能濃度分布計算を行う。

c. 二次的な汚染の放射能の評価

放射能濃度分布計算にて算出した放射能濃度に、機器、配管等及び建物 コンクリートの重量又は表面積を乗じることにより二次的な汚染の放射 能を評価する。

4. 運転中廃棄物の評価方法

運転中廃棄物については、当該廃棄物の発生時の記録等を基に、貯蔵保管場所 毎の種類及び数量について評価を行う。

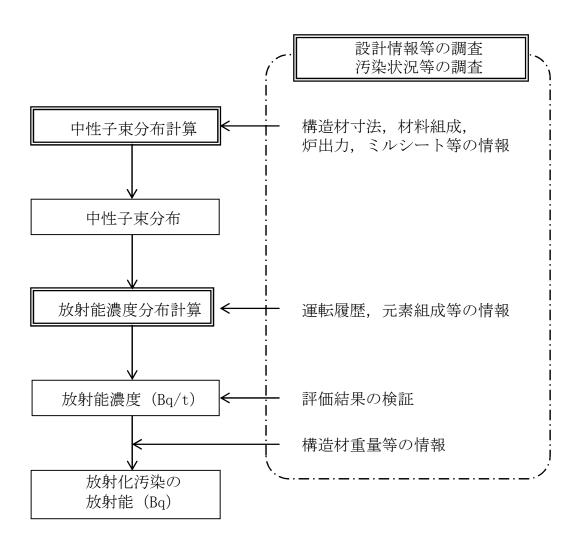
評価は,原子炉運転中の放射線管理記録,放射性廃棄物の保管記録等を参照又は1号炉に残存する放射性物質の評価方法と同様の方法により,評価する。

5. 代表試料の採取

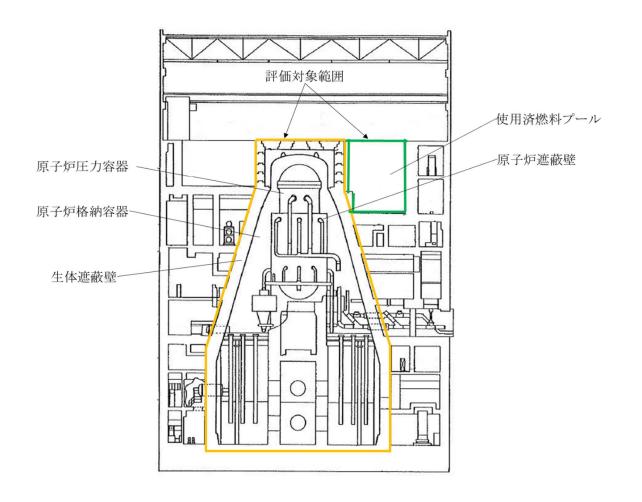
(1) 金属部位

取外し, 切出し等の方法により採取を行う。

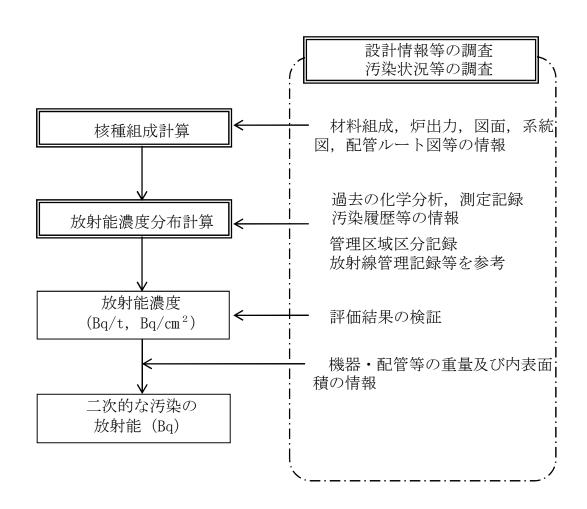
(2) コンクリート部位


コアボーリング、はつり等により採取を行う。

(3) 試料採取時の安全確保対策


試料採取に当たっては,以下に示す安全確保対策を実施し,事故防止に 努めるとともに,放射線業務従事者の被ばくを可能な限り低減させる。

- 試料採取を行う場合,事前に1号炉の保安のために必要な維持すべき機能等に影響を与えないことを確認した上で実施する。
- 適切な作業計画を立てることにより、作業時間の短縮を図るとともに、遠隔操作や遮蔽を適宜実施することで、外部被ばくの低減を図る。
- 内面付着物やコンクリート試料の採取を行う場合,汚染拡大防止囲い,局所フィルタ,局所排風機等により汚染拡大防止措置を講じる。また,マスク等の防護具を適切に着用することにより,身体汚染及び内部被ばくを防止する。
- 採取試料は適切に養生するとともに、必要に応じて容器に収納して 運搬することによって、汚染拡大防止及び被ばくの低減を図る。


以上

第1図 放射化汚染の評価フロー

第2図 放射化汚染の対象範囲(1号炉)

第3図 二次的な汚染の評価フロー

福島第二原子力発電所1号,	2号,	3号及び4号炉	審查資料
資料番号		添付6追補一1	
提出年月日	3.12	令和2年11月26	6日

本資料のうち、枠囲みの内容は商業機密の観点から公開できません。

福島第二原子力発電所 1号,2号,3号及び4号炉 使用済燃料プール水全喪失時の評価について

> 令和2年11月 東京電力ホールディングス株式会社

目 次

1. 使用	済燃料プール水大規模漏えい時の使用済燃料の健全性について	- 1 -
1. 1.	評価条件	- 1 -
1. 2.	評価結果	- 1 -
2. 使用	済燃料プール水大規模漏えい時の未臨界性の評価について	- 8 -
2. 1.	評価の概要	- 8 -
2. 2.	評価条件	- 9 -
2. 3.	評価基準	12 -
2. 4.	評価結果	13 -
3. 使用	済燃料プール水大規模漏えい時の使用済燃料からのスカイシャイ	ン紡
によ	る周辺公衆の放射線被ばくへの影響について	19 -
3. 1.	評価の概要	19 -
3. 2.	前提条件	19 -
3. 3.	評価条件	
3. 4.	評価結果	20 -
3. 5.	直接線の扱いについて	20 -
別紙1	燃料健全性評価に用いたパラメータの考え方について	29 -
別紙2	相当外気温度における太陽の輻射熱の考慮について	35 -
別紙 3	建屋(家)内空気温度評価の保守性について	39 -
別紙4	使用済燃料のクリープ歪評価について	40 -
別紙 5	原子炉建屋(家)構造材への影響について	44 -
別紙 6	廃止措置計画認可申請書の記載の適正化について	49 -
別紙 7	MCNPコードの適用性について	52 -

別紙8 使用済制御棒の評価条件について	- 60
別紙9 SCALEコードの適用性について	- 62
別紙 10 ボロン添加ステンレス鋼製ラックの耐食性・耐照射性について	1.1.
いる小な世間製品(とうちゅうを登立し来発金は水体研のペート情報を削り	- 69
されるこれは最後の自然の自然としませまりません。	
では、 を作さして、今和2年2月1日近点の返還禁を便定し、使用連載はデール	
及学((表) 関与)(主)(を) 対議等の料理機能は、J(電視となって) 大変で全	
Vに原子を禁煙(電)の天井及び放料を中尽以上の根壁で近して外間に世界さ	
20 中国的社会社会社会社会社会社会工作。	
(宋) 董卓电子周 5.1.3 维度的非常条件的 2.2.4 (宋) 董卓电子图 5.1.4 (宋)	
で見ってよる事業別が重要が使べて、それに対して、日本のでは、	
2.第二度驱内(字)自查型干部。(2)第二度以及证据的最高的复数内(读)第8	
1 代表制の主義ということは自然の最大人の成立と表すの情報があるが過	
발표를 하다면 가는 것으로 하고 말하는 이 이 사람들이 되었다. 이 사이 사이 사이를 하는 것은 것을 하는 것이다.	
を通じ、その全気組度とするどかに必要とから強利保証が支援機能と、現民語	
(本) (日) (11年 (新) (本) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	
はは、本評価でデルでは、ヒートンングは原子特殊是(第)の支針及び終料は	
が上の推動の公として独立、母子原拠屋。(支) からの規則の掲点からに保守	
認定としている。赤崎菜曽を表すに示け、	
神機全世界 個に知いたパラメータ(内表面景伝達存動、エングリードの動伝	
、外裏研製品単位製 の考え方について、知味12年代、また、相当外支出	

109/181

1. 使用済燃料プール水大規模漏えい時の使用済燃料の健全性について

1.1. 評価条件

使用済燃料プールの保有水が全喪失した場合であっても, 崩壊熱量が小さいときには, 空気の自然対流により露出した燃料の冷却維持が可能と考えられる。

評価条件として、令和2年2月1日時点の崩壊熱を想定し、使用済燃料プール 水が全て喪失していると仮定し、使用済燃料の発熱は、原子炉建屋(家)内空気 並びに原子炉建屋(家)の天井及び燃料取替床以上の側壁を通して外気に放熱さ れることにより除熱されるものとする。

使用済燃料プール水が全て喪失し、使用済燃料の発熱による原子炉建屋(家) 内の室内温度が定常状態となる場合において、外気温度を境界条件として、原子 炉建屋(家)内空気の最高温度を求める。次に、原子炉建屋(家)内空気が最も 発熱量が大きい燃料の下部から流入した際の燃料出口での空気温度を崩壊熱よ り評価し、その空気温度とするために必要となる燃料被覆管表面温度を、熱伝達 を考慮することにより評価を行う(図1)。

なお、本評価モデルでは、ヒートシンクは原子炉建屋(家)の天井及び燃料取替床以上の側壁のみとしており、原子炉建屋(家)からの放熱の観点からは保守的な設定としている。評価条件を表1に示す。

燃料健全性評価に用いたパラメータ(内表面熱伝達係数,コンクリートの熱伝 導率,外表面熱伝達係数)の考え方について,別紙1に示す。また,相当外気温 度における太陽の輻射熱の考慮について,別紙2に示す。

1.2. 評価結果

1号,2号,3号及び4号炉の燃料被覆管表面温度評価結果を表2に示す。燃料は室内空気の自然対流により冷却され,1号,2号,3号及び4号炉のうち1号炉での燃料被覆管表面温度が最も高く,最高でも322℃以下に保たれる。

なお,原子炉運転中の酸化及び使用済燃料プール水が全て喪失した空気中での酸化により生成した酸化皮膜内での温度上昇については 0.01^{\circ} 程度と評価され,表 2 の結果には影響しない。また,燃料中心温度と燃料被覆管表面温度の差は 1 \circ 未満であり,燃料溶融に至ることはない。

これらの燃料被覆管温度では、ジルコニウム合金である燃料被覆管の酸化反応速度は小さく、燃料被覆管の酸化反応による表面温度への影響はほとんどない^[1]。原子炉建屋(家)内空気温度評価の保守性について、別紙3に示す。

また,燃料被覆管温度を322℃とした条件において,原子炉運転中の酸化減肉及び使用済燃料プール水が全て喪失した後の空気中での酸化減肉を考慮したクリープ歪の評価を行った。クリープ歪の評価について,別紙4に示す。この結果,燃料被覆管のクリープ歪は1年後においても約0.1%であり,燃料被覆管の健全性を確認するためのクリープ歪の制限値1%^[2]を十分下回っていることから,使用済燃料プール水が喪失してから1年後においてもクリープ変形による破断は発生せず,燃料健全性は維持される。

以上のことから,使用済燃料プールの保有水が全て喪失しても,燃料被覆管温度は322℃以下に保たれ,酸化反応が促進されることはなく,燃料被覆管温度の上昇が燃料の健全性に影響を与えることはないと考えられる。

なお,本評価は使用済燃料プールの保有水が全喪失する極端な仮定に基づき 燃料の健全性を評価したものであるが,当該条件に基づく原子炉建屋(家)構造 材への影響について考察した結果を別紙5に示す。

枠囲みの内容は商業機密の観点から公開できません。

表1 評価条件

中国	根拠	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	各号炉の使用済燃料プールに貯蔵 されている使用済燃料の崩壊熱の 合計をORIGEN2.2にて計算 (令和2年2月1日時点)	天井面積を設定	燃料取替床以上の原子炉建屋 (家) 側壁面積を設定	建築分野で標準的に用いられる値 を設定(対流及び輻射による熱伝達 を考慮)[3]	建築分野で標準的に用いられる値 を設定(輻射による熱伝達のみを考慮) [3]	建屋 (家) 図面より設定	建屋(家)図面より設定	軽量コンクリートの一般的な物性 値を参照して設定 ^[4]
1		4号炉	※5 382 kW	中級目	(7) 新	領失は				u viellu
工工工工	值	3号炉	※5 398 kW		e de tri lescel	9 W/(m ² ·K)	4.6 W/(m²·K)		50% 281 247	0.472 W/(m·K)
※ 1		2号炉	約 431 kW	2 全社	大 育 場	/M 6	4.6 W,		特型。 位出日	0.472
		1号炉	※5 429 kW	出口也 以表达 使变变	n 5 i Sicti Okia		(1) (語) (1) 社会管辖 区科根积	二十二 二十二 三十二	以以 物物 特別 所有的	本の数 1 日本の数 1
	入力パラメータ		使用済燃料の総 発熱量	天井面積	燃料取替床以上 の側壁の面積	天井の内表面熱 伝達係数	燃料取替床以上 の側壁の内表面 熱伝達係数	天井コンクリー トの厚さ	燃料取替床以上 の側壁の厚き	天井コンクリー トの熱伝導率
	計算手順					原子炉建屋 (家) からの 放熱計算 (建	屋(家)内空気温度計算)	*		

表1 評価条件

計算手順		1号炉	2号 2	3号右	4号	根拠をラーンをリートワウを選出シンカ
	燃料取替床以上 の側壁コンクリ ートの熱伝導率	0.472 W	W/(m·K)	2.56 W/(m·K)	/ (m • K)	軽量コンクリートXは普通コンク リートの一般的な物性値を参照して設定[4]
	天井外表面熱伝 達係数	86	14.7 W/	14.7 W/ (m ² • K)		建築分野で標準的に用いられてい る値を設定 ^[3]
	燃料取替床以上 の側壁の外表面 熱伝達係数		14.7 W/	14. 7 W/ (m ² · K)		建築分野で標準的に用いられてい る値を設定 ^[3]
	相当外気温度		45	္		各時刻における外気温度に太陽輻射効果を考慮した相当外気温度について1日平均の最大値を設定
自然対流熱伝達の計算(燃	燃料集合体1体の発熱量	約321 W	糸 335 W	約319 W	※9 313 W	各号炉の使用済燃料プールに貯蔵 されている使用済燃料のうち, 燃料 集合体1体当たりの最大の崩壊熱 をORIGEN2.2にて計算(令 和2年2月1日時点)
科集合体出口 空気温度計	摩擦損失計算用 流路面積A					チャンネルボックスに囲まれる面 積一 (燃料棒+ウォータ・ロッド) に囲まれる面積
算)	流れの等価直径			A STATE OF THE STA		$d_{ef} = 4A/L_f$ (A と摩擦損失計算用濡れ縁長さ L_f より算出)

	根拠	(学の日・グーテント等交換)「国	単相での燃料集合体局所圧損係数 (=k(下部タイプレート)+k(ス ペーサ) ×7+k(上部タイプレー ト))を基に計算流路全体の局所圧 損係数を設定	チャンネルボックスに囲まれる面 積	$d_{eh}=4A'/L_h$ (A' と伝熱計算用濡れ縁長さ L_h より算出)	燃料棒有効長を設定	最大線出力密度と炉心平均線出力 密度の比を設定	を公司の参加を登りを 1 日本の一年を日本の一年 1 日本の一年を日本の一年 1 日本の一年を日本の一年 1 日本の一年 1 日本の一年	
	Sapata process	4号炉	1.00		1		2.29	(2.1)	
評価条件	値	3号炬				(A : Tra)	2. 46		
表1		2号炉	8			W 7	2.34		
		1号炉	1 155 AM				2.30	A 22-0	
一年 日本	入力パラメータ		局所圧力損失係数	伝熱計算用流路 面積A'	熱の等価直径	発熱長さ	ピーキングファクタ		
	計算手順		はない。 はない。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 になっています。 にはななっています。 にはなるなっています。 にはなるなっています。 にはなるなっています。 にはなるなっています。 にはなるなっています。 にはなるなっています。 にはなるなっています。 にはなるなったいます。 にはなるなったいます。 にはななるなったいます。 にはなるなるななななななななななななななななななななななななななななななななな		燃料被覆管表	面温度計算			

表 2 燃料被覆管表面温度及びクリープ歪

項目	1号炉	2号炉	3号炉	4号炉	備考
燃料被覆管 表面温度 (℃)	約 322	約 305	約 277	約 259	令和2年2月1日 時点での評価 ^{*1}
クリープ歪 (%) ** ²	約 0.1	約 0.1 ^{**2}	約 0.1 ^{**2}	約 0.1 ^{※2}	令和2年2月1日 時点での評価*1

- ※1 全ての燃料が各号炉の使用済燃料プールに貯蔵された状態。
- ※2 燃料被覆管表面温度が320℃を下回る場合は320℃として評価した。

(参考文献)

- [1] "Air Oxidation Kinetics for Zr-Based Alloys", Argonne National Laboratory, NUREG/CR-6846 ANL-03/32
- [2] 「日本原子力学会標準 使用済燃料中間貯蔵施設用金属キャスクの安全設計及び検査基準:2010」2010年7月,一般社団法人 日本原子力学会
- [3] 「最新建築環境工学」田中俊六 他共著, 井上書院
- [4] 「コンクリート標準示方書」土木学会

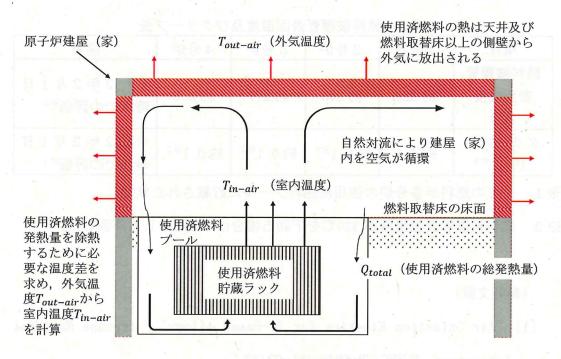


図1 評価モデル

2. 使用済燃料プール水大規模漏えい時の未臨界性の評価について

2.1. 評価の概要

燃料集合体が貯蔵された使用済燃料プールにおいて、使用済燃料プール水が 沸騰や喪失した場合を想定しても臨界を防止できることを確認するため、使用 済燃料プール全体の水密度を一様に 0.0~1.0g/cm³ まで変化させた条件で実効 増倍率の評価を行う。評価の概要を図2及び図3に示す。

福島第二原子力発電所の使用済燃料プールでは、ボロン添加ステンレス鋼製ラックを使用している。これらのラックでは、ボロンによる中性子吸収効果が大きく中性子は減速不足の状態となっているため、水密度が大きいほうが実効増倍率は大きくなる。従って、プール水の沸騰や喪失により水密度が小さくなれば実効増倍率は減少すると考えられる。

本評価では、モンテカルロ法に基づく3次元多群輸送計算コードSCALEシステムを用いる。当発電所は1号炉から4号炉の使用済燃料プールを共用化しているため、評価にあたっては1号及び2号炉の燃料(C格子燃料)並びに3号及び4号炉の燃料(S格子燃料)を考慮する。また、1号及び3号炉並びに2号及び4号炉のラックの仕様はそれぞれ共通となっている。解析条件については、炉心装荷状態での無限増倍率が1.30となる燃料集合体のモデルバンドルを設定し、プール水温、ラック板厚、ラックセル間ピッチ、ボロン添加率、ラックセル内燃料配置それぞれについて評価結果が最も厳しくなる状態で評価する。また、モンテカルロ計算手法に特有な統計誤差を考慮するため、実効増倍率に標準偏差の3倍を加える。

評価の結果,実効増倍率が最も厳しくなるのは冠水状態(水密度 1.0g/cm³)の0.940 (1号及び3号炉),0.929 (2号及び4号炉)で評価基準0.95 以下となり,水密度が減少する事象が生じた場合でも未臨界は維持されることを確認した。

2.2. 評価条件

評価条件を表3にまとめる。また,評価条件の設定の考え方を以下に記載する[1][2]

(1) 燃料条件

使用済燃料貯蔵ラックの未臨界性評価に用いる燃料集合体の条件については、新燃料及びいかなる燃焼度の燃料を貯蔵しても十分安全側の評価を得るように、炉心装荷状態での無限増倍率が未燃焼の状態で1.30となるモデルバンドルを設定する。

モデルバンドルの断面形状は、水対ウラン比が大きい9×9燃料(A型)の上部断面を用いる。これは、ボロン添加ステンレス鋼製ラックの場合、ボロンによる中性子吸収効果が大きく中性子は減速不足の状態となっているため、水対ウラン比が大きいモデルバンドルを用いたほうが、ラック体系における中性子の減速不足状態が緩和され、実効増倍率が高く評価されるためである。

ここで、1号及び2号炉の燃料(C格子燃料)と、3号及び4号炉の燃料(S格子燃料)の燃料条件をそれぞれ設定する。

(2) ラックの寸法条件

ラックの寸法条件については、実効増倍率が最も大きくなるようラックの製造公差を組み合わせた寸法を用いる。ラックの製造公差としては、ラック板厚、ラックセル間ピッチ、ラックセル内幅がある。ここで、ラック板厚、ラックセル間ピッチ、ラックセル内幅は互いに従属するパラメータであり、2つが決まると残りのパラメータの設定範囲は制約を受ける。

- ① 1号及び3号炉のボロン添加ステンレス鋼製ラック1
 - ・ ラック板厚

製造公差を考慮して下限値を設定する。これは、中性子吸収材であるボロンの量が少なくなり、実効増倍率は大きくなるためである。

ラックセル間ピッチ

製造公差を考慮して下限値を設定する。これは、ピッチを小さく すると水ギャップが小さくなりその領域での熱中性子東が小さく なるため、ボロンに吸収される熱中性子が減少し実効増倍率は大き くなるためである。

ラックセル内幅

上述のとおり決定されたラック板厚,ラックセル間ピッチに適合する範囲内で,製造公差を考慮して上限値を設定する。これは,内幅を大きくすると,角管外の水ギャップが小さくなりその領域での熱中性子東が小さくなるため,ボロンに吸収される熱中性子が減少し実効増倍率は大きくなるためである。

- ② 2号及び4号炉のボロン添加ステンレス鋼製ラック²
 - ラック板厚

製造公差を考慮して下限値を設定する。これは、中性子吸収材で

¹ 1号及び3号炉のボロン添加ステンレス鋼製ラックは,角管を縦横に配列し これらを補強板により東ねた構造となっており,隣接する角管の間には水ギャップが存在している。ここで,角管部分に燃料集合体1体を貯蔵する。(図4 参照)

² 2号及び4号炉のボロン添加ステンレス鋼製ラックは,角管を市松模様に配列し角管のコーナー部同士を溶接して連結した構造となっている。ここで,角管又は角管及び外周の板で囲まれた角形部分に燃料集合体1体を貯蔵する。(図4参照)

あるボロンの量が少なくなり、実効増倍率は大きくなるためである。

ラックセル間ピッチ

製造公差を考慮して下限値を設定する。これは、ピッチを小さくすると水ギャップが小さくなりその領域での熱中性子東が小さくなるため、ボロンに吸収される熱中性子が減少し実効増倍率は大きくなるためである。また、ラック自体が小さくなり中性子吸収材であるボロンの量が減るため、実効増倍率は大きくなるためである。

ラックセル内幅

上述のとおり決定されたラック板厚, ラックセル間ピッチに適合する範囲内で, 製造公差を考慮して下限値を設定する。これは, 内幅を小さくすると, 上述のラックセル間ピッチを小さくする場合と同様に実効増倍率は大きくなるためである。

(3) ボロン添加率

ボロン添加ステンレス鋼製ラックのボロン添加率を変化させた場合、 ボロン添加率が小さいほど実効増倍率は大きくなるため、製造範囲の下 限値を設定する。

(4) ラック内燃料配置

燃料集合体をラックセル内の中央に配置する。これは、中央配置と偏心 配置を比較すると、偏心により核分裂性物質が強吸収体のボロンに接近 して反応度が低下する効果の方が、核分裂性物質集中による反応度上昇 の効果より大きいため、中央配置の方が実効増倍率は大きくなるためで ある。

(5) 計算体系 (境界条件)

図2及び図3に示すとおり、計算体系については、ラックセル内に燃料集合体1体を配置した体系を単位格子とし、保守的に鉛直方向は無限長、水平方向はラックセルの単位格子が無限に繰り返す配置とした。

(6) プール水温度及び水密度

ボロン添加ステンレス鋼製ラックの場合,ボロンによる中性子吸収効果が大きく中性子は減速不足の状態となっているため、水密度の大きい低温側で減速効果が大きくなり未臨界性が厳しくなる。従って、プール水温度として、水の密度が最大となり実効増倍率が最も大きくなる 4° を評価条件とする。その上で、使用済燃料プール全体の水密度を一様に 0.0° この 2° この 2° の 2° で変化させた条件で実効増倍率の評価を行う。

2.3. 評価基準

「臨界安全ハンドブック」^[3]においては、モンテカルロコードを用いた場合には、計算された実効増倍率の平均値に標準偏差の3倍の値を加えた値を推定臨界下限増倍率又は0.95と比較し、未臨界を判定するとされている。これを参考として、本評価における評価基準は、モンテカルロ計算に伴う統計誤差を考慮し標準偏差の3倍の値を加えた上で、実効増倍率が0.95以下になることとしている。

ここで、未臨界性評価においては、使用済燃料貯蔵ラックの製造公差や燃料配置の不確かさを考慮して実効増倍率が厳しくなるよう保守的な評価条件としている。また、燃料条件についても、炉心装荷状態の無限増倍率が1.30となる包絡的なモデルバンドルの設定や、無限体系による保守的な評価条件としている。

2.4. 評価結果

評価結果を図2及び図3に示す。実効増倍率が最も厳しくなるのは冠水状態 (水密度1.0g/cm³) の0.940 (1号及び3号炉),0.929 (2号及び4号炉) であり,水密度の減少とともに実効増倍率は減少することを確認した。また,評価基準0.95以下となることを確認した。表4に,冠水状態(水密度1.0g/cm³) における実効増倍率の値を,モンテカルロ計算に伴う統計誤差と合わせて示す。

ためと考えられる。
一直度として、1大の密度が最大となり実施措施率が務ち大きくなる4℃を
向を示しているのは、表3の評価条件にて示したとおり、
て1号及び3号炉の使用済燃料貯蔵ラックにおける実効増倍率が大きくなる傾
なお, 実効増倍率が最も厳しくなる冠水状態において, 2号及び4号炉に比べ

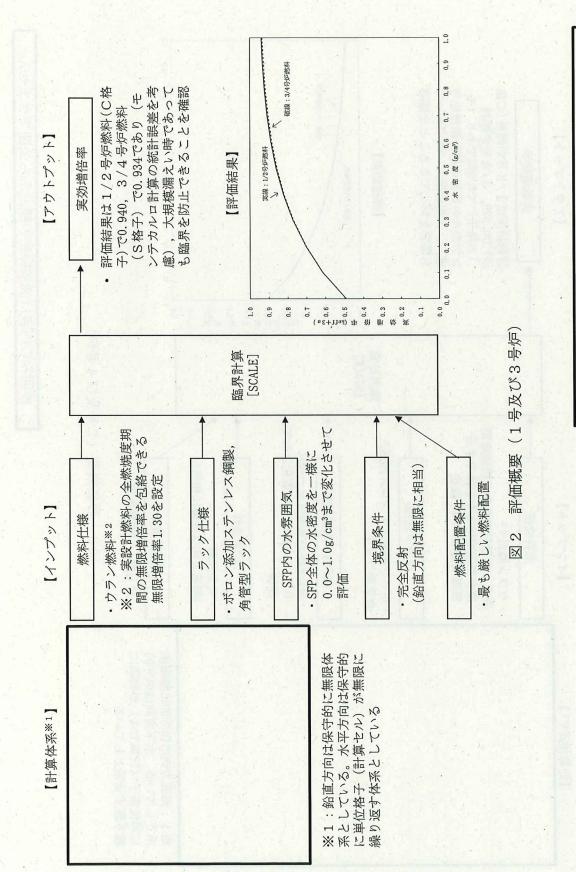
(参考文献)

- [1]「ボロン添加ステンレス鋼製使用済燃料貯蔵ラックの未臨界性評価について」(株式会社東芝, TLR-051, 1998年5月)
- [2]「ボロン添加ステンレス鋼製使用済燃料貯蔵ラックの未臨界性評価について」(株式会社日立製作所, HLR-046, 1998年2月)
- [3] 「臨界安全ハンドブック第2版」(日本原子力研究所, JAERI1340, 1999 年3月)

枠囲みの内容は商業機密の観点から公開できません。

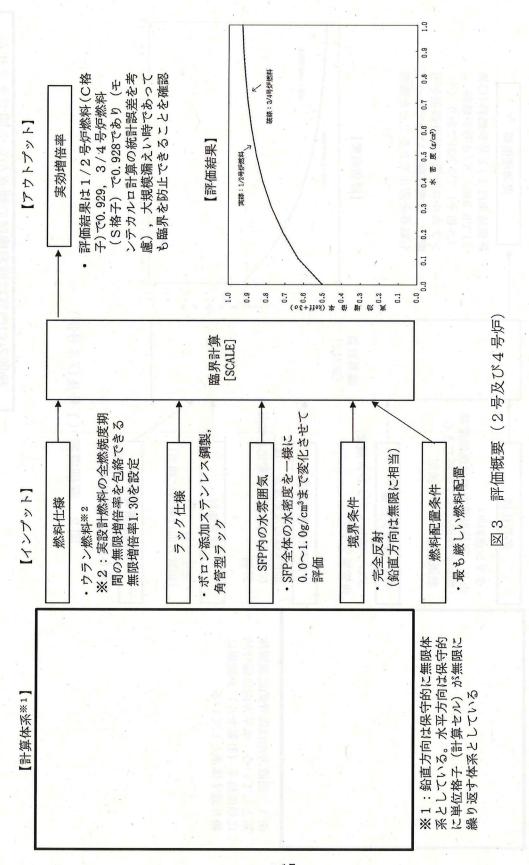
表3 パラメータの設定根拠

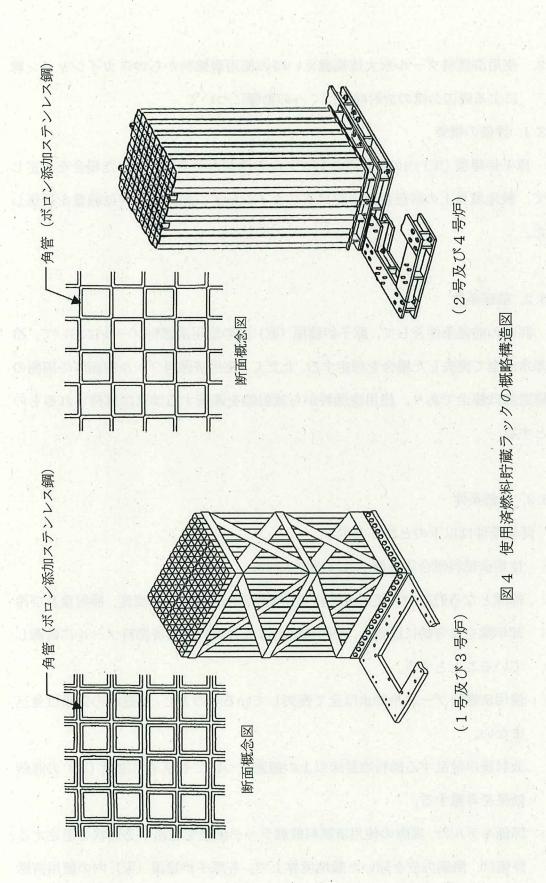
		-	
°<	パラメータ	PM PM PM PM PM PM PM PM	設定根拠
	(燃料種類)	ウラン燃料 (9×9 (A型)燃料上部断 面)	実設計燃料の全燃焼度期間の無限増倍率を包絡できる無限増倍率 1.30 を設定
	材料	ボロン添加ステンレス鋼	
- W	ラック板厚		未臨界性評価上厳しくなるように、製造公差を考慮して下限値を設定
アップ	ラックセル 間ピッチ		未臨界性評価上厳しくなるように,製造公差を考慮して下限値を設定
	ラックセル 内幅		未臨界性評価上厳しくなるように,製造公差を考慮して上限値(1/3号炉)又は下限値(2/4号炉)を設定
	ボロン添加		未臨界性評価上厳しくなるように,製造範囲の下限値を設定
ラック内	ラック内燃料配置	ラックセル内中央配置	未臨界性評価上厳しくなるように、ラック内の配置を設定
上 条 条 条	上面,下面侧面	完全反射	鉛直方向は無限長,水平方向はラックセルの単位格子が無限に繰り返す配置に 相当するため,未臨界性評価上厳しくなる
プールオ	プール水温,水密度	4°C, 0.0~1.0g/cm ³	いかなる密度条件においても臨界を防止できることの確認として設定


表 4 実効増倍率及び統計誤差

		実効増倍率*1				
		実効増倍率	± σ ^{* 2}	実効増倍率+3 σ **3		
1号及び	C格子 燃料			0. 940		
3号炉	S格子 燃料			0. 934		
2号及び	C格子 燃料	サイル 意		0. 929		
4号炉	S格子 燃料	大学 ない 一番		0. 928		

※1: 実効増倍率が最も大きくなるプール水温4℃, 水密度 1.0g/cm³の値


※2:モンテカルロ計算に伴う統計誤差


※3:小数点第4位を切上げた値

- 16 -

枠囲みの内容は商業機密の観点から公開できません。

- 18 -

3. 使用済燃料プール水大規模漏えい時の使用済燃料からのスカイシャイン線による周辺公衆の放射線被ばくへの影響について

3.1. 評価の概要

原子炉建屋(家)内の使用済燃料プールの冷却水が全て喪失した場合を想定して、敷地境界上の評価地点におけるスカイシャイン線による実効線量を評価した。

3.2. 前提条件

評価の前提条件として,原子炉建屋(家)内の使用済燃料プールにおいて,冷却水が全て喪失した場合を想定する。ただし,使用済燃料プール壁面等の周囲の構造部は健全であり,使用済燃料から放射線を遮蔽する効果は維持されるものとする。

3.3. 評価条件

評価条件は以下のとおりとする。

- 使用済燃料集合体の健全性は維持される。
- 線源となる貯蔵中の使用済燃料及び使用済制御棒は、燃焼度、照射量及び冷却年数を保守的に設定し、使用済燃料は各号炉の使用済燃料プールに貯蔵していることとする。
- 使用済燃料プール冷却水は全て喪失しているものとし、水遮蔽の効果は見込まない。
- 放射線が散乱する燃料取替床以上の範囲についても原子炉建屋(家)の遮蔽 効果を考慮する。
- 評価モデルは,実際の使用済燃料貯蔵ラック配置を包絡する形状を想定する。
- 評価は、海側方位を除いた敷地境界上で、各原子炉建屋(家)内の使用済燃

料プールからの距離が最も短く, 実効線量が最大となる地点について実施する。

- ・ 線源強度の設定条件を表 5 に、スカイシャイン線の評価条件を表 6 に、評価 モデルを図 5 にそれぞれ示す。
- 評価地点の条件を表7に、評価地点の概略を図6にそれぞれ示す。

3.4. 評価結果

評価結果を表 8 に示す。敷地境界上の評価地点におけるスカイシャイン線による実効線量は、1 号炉が最大で、約 42μ Sv/h となり、保安規定に基づき整備している体制に従い使用済燃料プールに注水する等の措置を講じる時間を十分に確保できる *1 ことから、周辺公衆の放射線被ばくの影響は小さい。

※1:敷地境界上における被ばく線量が事故時の線量目標である5mSv に達するまで最小でも4日間の期間がある。

また、スカイシャイン線に対する遮蔽効果を確認するため、参考として、原子 炉建屋(家)の燃料取替床以上(図5の燃料取替床より上の部分)の部分の遮蔽 効果を考慮しない場合の評価を行った。評価結果を表9に示す。

3.5. 直接線の扱いについて

直接線及びスカイシャイン線の評価に当たっては、実績のあるMCNPコードを使用している。MCNPコードの適用性について別紙7に示す。MCNPコードの特性として、スカイシャイン線と同時に直接線も評価されるため、直接線による実効線量は表8の結果に含まれている。

表 5 線源強度の設定条件

		1号炉	2 号炉	3.号炉	4号炉	
使用済燃料	仕様	9×9燃料				
	燃料条件	55 (55 GWd/t 5			
1	冷却期間	約9年				
	貯蔵体数	2,334体	2,402体	2,360体	2,436 体	
使用済制御	E用済制御 照射条件		1.5	1.5 snvt		
棒(ボロン・	冷却期間	約9~30	約9~35	約9~30	約9~35	
カーバイト	7、保安集》	年	年	年	年	
型)	貯蔵体数	36 体	77 体	54 体	92 体	
使用済制御	照射条件	5.5 snvt		5.0 snvt		
棒 (ハフニウ	冷却期間	発の無点で	10~	~30年		
ム型)	貯蔵体数	64 体	66 体	57 体	65 体	

※使用済制御棒の詳細な評価条件については別紙8に示す。

表 6 スカイシャイン線の評価条件

秋 0	スカインヤイン派の計画木口
in the state of th	原子炉建屋:コンクリート (1号及び2号炉)天井及び燃料 取替床以上の側壁は軽量コンクリート (3号及び4号炉)天井は軽量コンクリート,燃料取替床以上の側
遮蔽材	壁は普通コンクリート 地面:コンクリート (0.P.Omより下の部分と し,γ線の地表面からの反射・吸収を考 慮する)
	使用済燃料:二酸化ウラン,ジルカロイ(被覆管,チャンネルボックス) 使用済制御棒:ボロン・カーバイト,ハフニウム,ステンレス鋼
	その他:空気
検出器	ポイントディテクタエスティメータ (評価地点高さ+1.5m)
ライブラリ	MCPLIB84
γ 線束-線量換算係数	ICRP Pub. 74
γ 線輸送の物理モデル	ボルツマン方程式
γ線の輸送下限	1 keV
γ線発生数	2千万個以上
分散低減法	Weight window 法
計算収束方法	Weight window parameter 評価のためのメッシュを適切に設定し誤差を低減
判定基準	評価結果の統計誤差 (1σ) が 5% 未満であることに加え、単調減少及び $1/\sqrt{N}$ 減少などの収束に関する警告の内容を総合的に勘案して計算結果を選定
評価範囲	原子炉建屋中心の 0.P. 0 m を中心とした半径 5 km の球形の範囲

表 7 評価地点の条件

(単位:m)

二是加加北西(敬号)	1号炉	2号炉	3号炉	4号炉
敷地境界評価地点 0. P.	5. 5	5. 5	11.5	11. 5
使用済燃料プール中心	400	550	630	490
からの距離	16	+1		

表 8 評価結果

項目	1号炉	2号炉	3号炉	4号炉
実効線量	約 42	約 6.9	約 2.3	約 14
(μSv/h)	(約 12)	(約 2.5)	(約 0.85)	(約 4.3)

(()内は使用済燃料からの実効線量を示す)

表 9 原子炉建屋 (家) の燃料取替床以上の部分の遮蔽効果を 考慮しない場合の評価結果 (参考値)

項目	1号炉	2号炉	3号炉	4 号炉
実効線量 (μ Sv/h)	約 140	約 22	約8.3	約 56

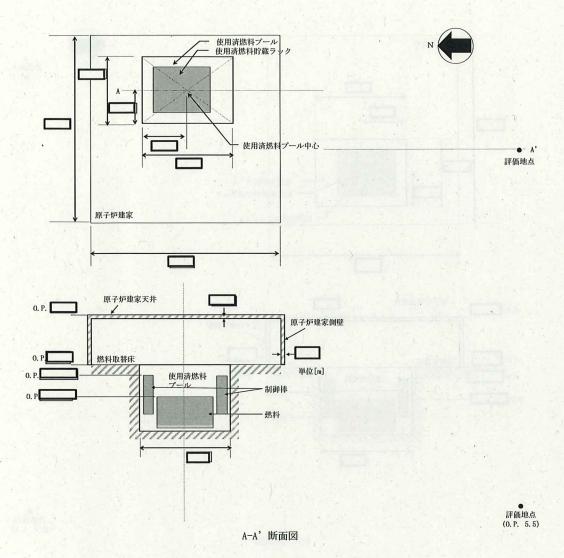
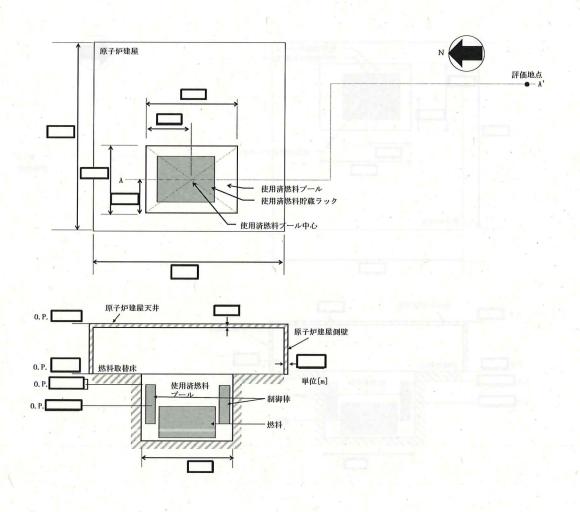



図5 (1) 評価モデル (1号炉)

● 評価地点 (0. P. 5.5)

A-A'断面図

図5 (2) 評価モデル (2号炉)

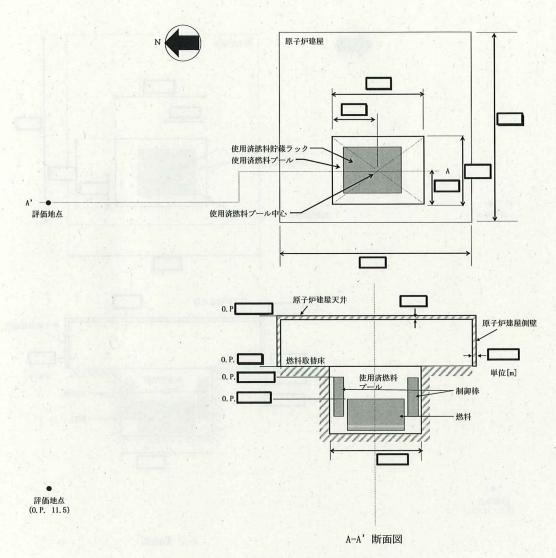


図5 (3) 評価モデル (3号炉)

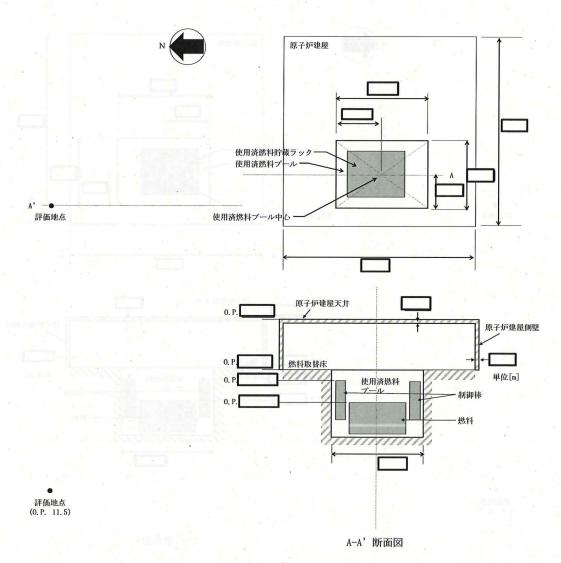


図5(4) 評価モデル(4号炉)

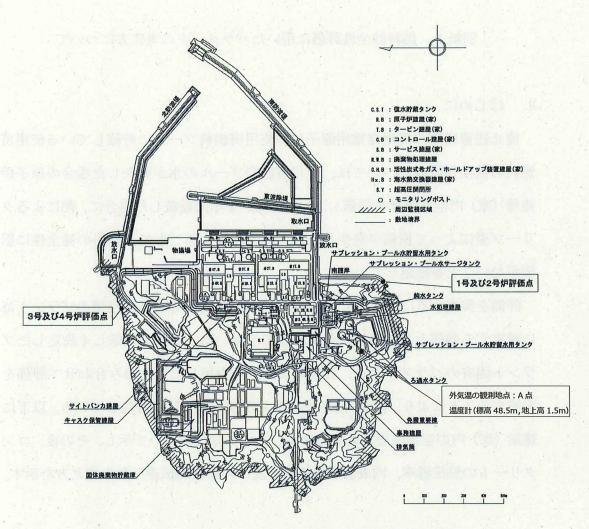


図6 1号, 2号, 3号及び4号炉の評価地点の概略

別紙1 燃料健全性評価に用いたパラメータの考え方について

1. はじめに

廃止措置段階の実用発電用原子炉の使用済燃料プールに貯蔵している使用済燃料の健全性評価については、使用済燃料プールの水が喪失した場合の原子炉建屋(家)内空気温度を評価し、その温度が1年間継続した場合に、熱によるクリープ歪によって損傷が発生しないことを評価することで、燃料の健全性に影響がないことを確認している。

評価を実施するに当たって、外気温度や建屋(家)の放熱面積等のプラント毎に設定する数値として厳しい条件を設定している。これらの厳しく設定したプラント固有のパラメータと、各種の文献から引用した値を組み合わせて評価を実施することにより、建屋(家)内の空気温度を保守的に評価している。以下に建屋(家)内の空気温度の評価方法及びその保守性について示し、その後、コンクリートの熱伝導率、内表面熱伝達係数及び外表面熱伝達係数の考え方を示す。

2. 建屋(家)内空気温度の評価方法

建屋(家)内空気温度(T_{in-air})は、①使用済燃料の総発熱量(Q_{total})、②天井 /燃料取替床以上の側壁の伝熱面面積(A_{roof}/A_{wall})、③天井/燃料取替床以上 の側壁の内表面熱伝達係数 (h_{1roof}/h_{1wall})、④天井/燃料取替床以上の側壁の 外表面熱伝達係数 (h_{2roof}/h_{2wall})、⑤天井/燃料取替床以上の側壁の コンクリート熱伝導率($\lambda_{roof}/\lambda_{wall}$)、⑥外気温度($T_{out-air}$)、⑦天井/燃料取替床の側 壁コンクリート厚さ(t_{roof}/t_{wall})など様々なパラメータを組み合わせて評価し ている。 (評価式)

$$T_{in-air} = \frac{Q_{total}}{K_{roof}A_{roof} + K_{wall}A_{wall}} + T_{out-air}$$
 (K) (1)

ここで,

$$K_{roof} = \frac{1}{\frac{1}{h_{1roof}} + \frac{t_{roof}}{\lambda_{roof}} + \frac{1}{h_{2roof}}}$$
(2)

$$K_{wall} = \frac{1}{\frac{1}{h_{1wall}} + \frac{t_{wall}}{\lambda_{wall}} + \frac{1}{h_{2wall}}}$$
(3)

 K_{roof} と K_{wall} は、天井と燃料取替床以上の側壁における建屋(家)内面から外面の熱通過率を示す。

評価においては、保守的に実施するため、以下のパラメータを厳しく想定している。

- ・ 相当外気温度**1:福島第二原子力発電所で観測した気象データを基に算出し、 過去 10 年間のデータにおいて、1日平均値のうち最も高い値を設定してい る。この相当外気温度が1年間季節問わず継続すると仮定**2
 - ※1:太陽の輻射熱を考慮した温度。燃料健全性の評価は1年間におけるクリープ歪量を評価するため、1日平均値のうち最も高い値を想定することは保守的な想定となる。
 - ※2:実際は季節による気温変動が想定されるが、保守的にこれらの効果を 無視している。相当外気温度が高くなるほど燃料被覆管表面温度は高 くなる。
- 伝熱面面積:使用済燃料プールが設置されている建屋(家)から外気への放 熱を、天井及び燃料取替床以上の側壁面からのみに限定*3
 - ※3:実際は建屋(家)の底面や使用済燃料プール壁面や底面からの放熱が

想定されるが、保守的にこれらの効果を無視している。放熱面積が限 定されるほど建屋(家)内からの放熱量が減少するため、燃料被覆管 表面温度が高くなる。

3. コンクリートの熱伝導率の考え方

コンクリートの熱伝導率は、一般的な物性値として普通コンクリートでは 2.56 W/(m・K), 軽量コンクリートでは 0.472 W/(m・K)を使用している。以下 に現実的な評価条件におけるコンクリートの温度の評価を示し、同物性値を使用することの妥当性を示す。

3.1. 原子炉建屋(家) 天井及び燃料取替床以上の側壁内面温度の算出方法 <算出式>

$$T_{1roof} = T_{in-air} - q''_{roof} / h_{1roof}$$

$$\tag{4}$$

$$T_{1wall} = T_{in-air} - q''_{wall}/h_{1wall}$$
(5)

ここで、 T_{1roof} と T_{1wall} は、それぞれ建屋(家)天井及び燃料取替床以上の側壁の内面温度を示す。建屋(家)内空気温度(T_{in-air})、天井/燃料取替床以上の側壁の内表面熱伝達係数 (h_{1roof}/h_{1wall}) 、天井/燃料取替床以上の側壁をそれぞれ通して伝わる熱流束(q_{roof}/q_{wall})は、申請書と同じ値を用いて評価する。

3.2. 現実的なパラメータの設定及びコンクリート温度の評価結果

相当外気温度については、過去 10 年のデータにおいて、1 年平均値のうち最 も高い値である 23℃を想定する。

以上より、1号炉における建屋(家)天井及び燃料取替床以上の側壁のコンク

リートの温度を評価すると、1号炉においてそれぞれ 76℃、75℃となる。従って、コンクリート熱伝導率 (0.472~W/(m·K)) を設定することは妥当と考えられる。

4. 内表面熱伝達係数及び外表面熱伝達係数の考え方

内表面熱伝達係数及び外表面熱伝達係数は,文献^{[1][2]}に基づき,一般的に用いられている値を使用している。外表面熱伝達係数の対流熱伝達係数については,風速の設定が必要となるが,本評価においては保守的に風速 1 m/s を想定している。以下に内表面熱伝達係数及び外表面熱伝達係数の考え方,風速設定の妥当性について示す。

- 4.1. 内表面熱伝達係数及び外表面熱伝達係数の設定の考え方本評価において内表面熱伝達係数及び外表面熱伝達係数は、文献^[1]に基づき、一般的に用いられている以下の値を設定している。
 - ・ 内表面熱伝達係数 *4 9 W/(* ・K) = 4.6 (放射熱伝達係数) + 4.4 (対流 熱伝達係数 [無風])
 - ※4:燃料取替床以上の側壁の内表面熱伝達係数については,放射熱伝達 係数 4.6 W/(m²・K) のみを考慮し,対流による熱伝達は保守的に無 視している。
 - 外表面熱伝達係数 $14.7 \text{ W/(m}^2 \cdot \text{K}) = 5.1 \text{ (放射熱伝達係数)} + 9.6 \text{ (対流 熱伝達係数 [風速 <math>1 \text{ m/s}$])
- 4.2. 外表面熱伝達係数における対流熱伝達係数設定のための風速の考え方原子炉建屋(家)天井及び燃料取替床以上の側壁における外表面熱伝達係数の対流熱伝達係数については、屋外であることから風速1m/s の強制対流条件とした伝熱工学の式(ユルゲスの式)を用いて算出している。風速1m/s を前提とし

て算出した値を用いることについては以下の点から妥当である。

- 福島第二原子力発電所の風速データのうち、過去10年間での最小年平均風速は図1に示すとおり、地上高10mで約1.8m/sである。原子炉建屋(家)天井面は1号炉で地上高約57m(0.P.68500)、2~4号炉で約58m(0.P.70000)であり、また原子炉建屋(家)燃料取替床は1~4号炉で地上高約51m(0.P.50500)である。文献[3]に基づき計算すると、天井面及び燃料取替床相当の地上高さでの年平均風速は約2~3m/sと想定される。
- 現実的な風速値よりも小さい値を設定することにより、建屋(家)外表面の 熱伝達係数は小さくなり、建屋(家)内からの放熱量は減少するため、燃料 被覆管表面温度は高くなる。
- 風速が変化したとしても建屋(家)内温度が変動するまでには時間遅れが発生し、この間に風速も変化するため、短時間の風速の変化の影響は限定的である。

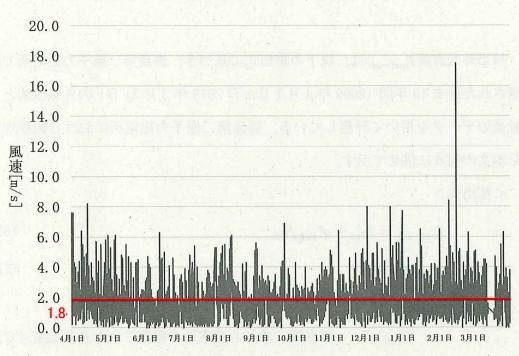


図1 2010年度風速データ(採取場所:地上高10m)

(参考文献)

- [1] 「最新建築環境工学」田中俊六 他共著 井上書院
- [2]「空気調和・衛生工学便覧第 13 版 3 空気調和設備設計篇」空気調和・衛生工学会編
- [3] 「ビル風の基礎知識」風工学研究所 鹿島出版会

別紙2 相当外気温度における太陽の輻射熱の考慮について

相当外気温度 $T_{out-air}$ は、以下の算出式に基づき、福島第二原子力発電所で観測された過去 10 年間(2009 年 4 月 1 日から 2019 年 3 月 31 日)の外気温度と日射量のデータを用いて評価している。福島第二原子力発電所における観測地点を本文の図 6 に併せて示す。

<算出式>

$$T_{out-air} = T_{out} + q''_{sun}/h_2 (6)$$

$$q"_{sun} = I \times a \tag{7}$$

ここで,

T_{out} :福島第二原子力発電所で観測された外気温度 (℃)

q"sum : 天井壁での日射吸収量 (W/m²)

h₂ : 外表面熱伝達係数 (W/(m²·K)) (=14.7)

I: 福島第二原子力発電所で観測された日射量

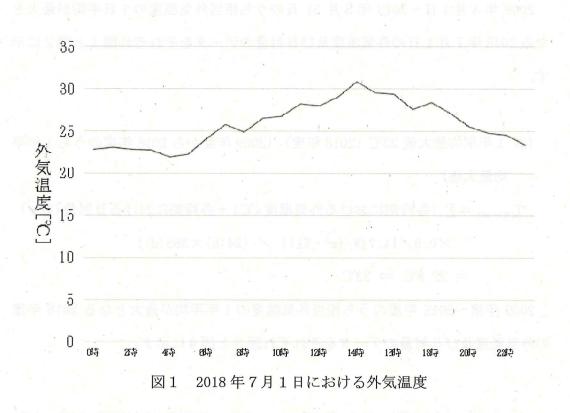
 (W/m^2)

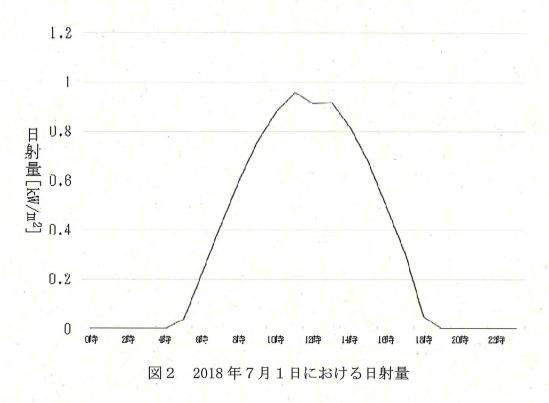
a : 日射吸収率 (=0.8)

相当外気温度のうち,1日平均最大値45℃及び1年平均最大値23℃を算出した際の外気温度と日射量のデータはそれぞれ以下の通りである。

(1) 1日平均最大値 45℃ (2018年7月1日) (2009年4月1日から 2019年3月31日のうち1日平均最大値)

 $T_{\text{out-air}} = \Sigma$ {各時刻における外気温度 ($^{\circ}$ C) +各時刻における日射量 ($^{\circ}$ M/m²) $\times 0.8/14.7(\text{W}/(\text{m}^2 \cdot \text{K}))$ }/24 (h)


 $= 44.13^{\circ}\text{C} \Rightarrow 45^{\circ}\text{C}$


2009 年4月1日~2019 年3月31日のうち相当外気温度の1日平均が最大となる2018年7月1日の外気温度及び日射量のデータをそれぞれ図1と図2に示す。

(2) 1年平均最大値 23℃ (2018 年度) (2009 年度から 2018 年度のうち 1 年平均最大値)

 $T_{\text{out-air}} = \sum$ {各時刻における外気温度 ($^{\circ}$ C) +各時刻における日射量 ($^{\circ}$ W/m²) \times 0.8/14.7($^{\circ}$ W/(m² · K))} / (24(h) × 365(d)) $= 22.8^{\circ}$ C

2009 年度~2018 年度のうち相当外気温度の1年平均が最大となる 2018 年度の外気温度及び日射量のデータをそれぞれ図3と図4に示す。

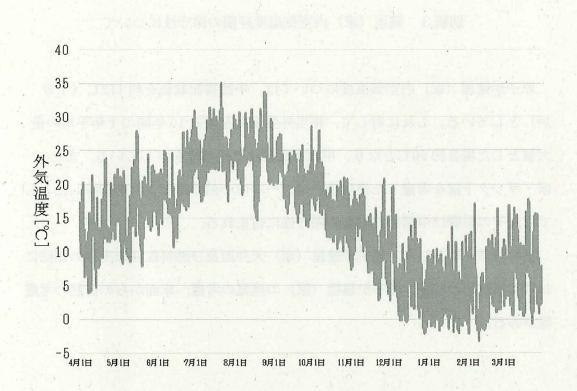
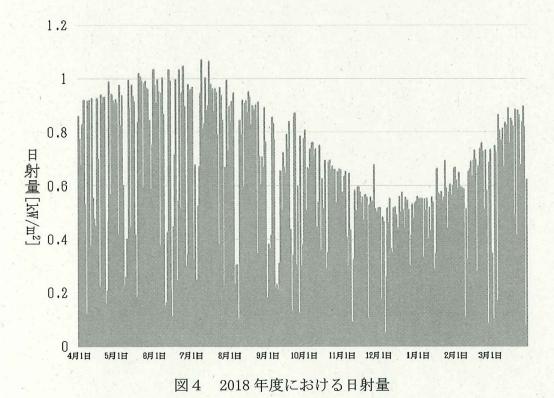



図3 2018年度における外気温度

- 38 -

別紙3 建屋(家)内空気温度評価の保守性について

原子炉建屋(家)内空気温度については、申請書記載値を約112℃(1号炉)としている。これに対して、相当外気温度を過去10年間の1年平均の最大値とした場合約90℃となり、申請書記載値は保守性を有している。また、床・ラック下部を考慮した使用済燃料プール中心部の温度上昇を加味したとしても、その影響は申請書記載値の保守性に含まれる。

更なる保守性として,原子炉建屋(家)天井面及び燃料取替床高さの側壁に おける風速値の考慮,原子炉建屋(家)の換気の考慮,床面からの伝熱の考慮 等がある。

別紙4 使用済燃料のクリープ歪評価について

使用済燃料プールから冷却水が全て喪失し,燃料被覆管表面温度が上昇した状態におけるクリープ歪を以下のとおり評価し,燃料健全性が維持されることを確認した。

1. 評価条件

評価条件を以下のとおり設定した。

○ 燃料被覆管表面温度:約322℃(1号炉)

320℃*1 (2号, 3号及び4号炉)

燃料被覆管周方向応力σ: (1号炉)(2号,3号及び4号炉)

 $P = \frac{T_i}{T'_i} p \tag{1}$

 $\sigma = \frac{P \times D}{2t} \tag{2}$

P:評価に用いる燃料棒内圧 (MPa)

p : 運転時の燃料棒内圧 (MPa) (;原子炉設置許可申 請書記載値 (運転中末期) に保守性を持たせた値)

 T_i : 評価に用いる燃料被覆管表面温度(K) (=約 595K(1号炉), 593. $15K^{*1}$ (2号, 3号及び4号炉))

T': : 寿命末期の燃料被覆管表面温度(K)

D:燃料被覆管平均径 (mm) (燃料被覆管外径及び内径の平均)

t : 燃料被覆管肉厚 (ライナ厚さを除く。) (mm)

※1:320℃程度より低い温度領域で評価式上の値が大きくなることから 参考文献[1]では評価式の適用温度の下限を320℃としており、燃料被覆管表面温度が適用温度の下限を下回る場合は,保守的な高温 側の値として適用温度の下限を設定した。

※2:原子炉運転中の酸化減肉量(約10%)を考慮した。

2. 評価手法

BWRの未照射燃料被覆管クリープ式 参考文献[1][2]を用いて、使用済燃料プール水が全て喪失した後の空気中での燃料被覆管の1年後におけるクリープ歪を評価する。

なお,以下の計算式に係る不確かさ*3は,「1.評価条件」の評価条件(燃料棒内圧,燃料被覆管減肉等)に含まれる保守性に包含されている。

※3:参考文献[1]においては、以下の評価式の不確かさを考慮して、評価式から得られる値を1.43 倍することとされている。

クリープ歪(一):

$$\varepsilon = \varepsilon_p^s \left(1 - \exp(-\beta (\dot{\varepsilon}_s \cdot t)^{0.61}) \right) + \dot{\varepsilon}_s \cdot t \tag{3}$$

二次クリープ速度 (1/h):

$$\dot{\varepsilon}_{s} = 2.1 \times 10^{9} \cdot \left(\frac{E}{T}\right) \cdot exp\left(\frac{2880\sigma_{\theta}}{E}\right) \cdot exp\left(-\frac{53600}{RT}\right) \tag{4}$$

飽和一次クリープ歪 (一):

$$\varepsilon_p^s = 5.0 \times 10^{-10} \cdot exp(0.0428T) \cdot (\dot{\varepsilon}_s)^{0.00543T - 2.603}$$
 (5)

 $(\hbar \epsilon_p^s \leq 0.06)$

$$\beta = 2.24 \times 10^{10} \cdot exp(-0.0275T) \cdot exp(-1200(\frac{\sigma_{\theta}}{E}))$$
 (6)

ここで.

t:時間(h)

E: ヤング率 (kg/mm²)

σ_θ : 周方向応力 (kg/mm²)

R : 気体定数 (cal/ (mol·K))

T : 絶対温度 (K)

3. 評価結果

原子炉運転中の酸化減肉を考慮した上記評価条件での燃料被覆管のクリープ歪は、1年後においても約0.1%である。この結果は燃料被覆管の健全性を確認するためのクリープ歪の制限値1%^[1]を十分下回っており、使用済燃料プール水が喪失してから1年後においてもクリープ変形による破断は発生せず、燃料健全性は維持される。

また、今回の評価において想定される温度、応力の範囲は、「2.評価手法」の評価式の適用範囲に含まれており、当該評価モデル式の適用は可能と判断した。

なお、当該クリープ式は、 8×8 燃料を試供材とした実験結果に基づき導出されたものだが、 8×8 燃料と 9×9 燃料は共に被覆管材質がジルカロイー2であり、燃料被覆管肉厚が異なるものの、当該式は、被覆管周方向応力を変数とする関数であることから、同様に取り扱うことができる。

また、図1に示すように、照射燃料を用いた試験 $^{[3]}$ においても 9×9 燃料 (BWR55GWd/t 型) のクリープ挙動は 8×8 燃料 (BWR50GWd/t 型) のクリープ挙動と同等の挙動を示している。

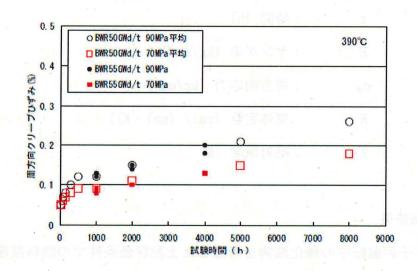


図 1 9×9燃料 (BWR55GWd/t 型) 被覆管と8×8燃料 (BWR50GWd/t 型) 被覆管のクリープ速度の比較[3]

(参考文献)

- [1]「日本原子力学会標準 使用済燃料中間貯蔵施設用金属キャスクの安全設計及び検査基準:2010」2010年7月,一般社団法人 日本原子力学会
- [2]「04-基炉報-0001 平成 15 年度 リサイクル燃料資源貯蔵施設安全解析コード改良試験 (燃料の長期安全性に関する試験最終成果報告書)」 (平成 16 年 6 月 独立行政法人 原子力安全基盤機構)
- [3]「06-基炉報-0006 平成 18 年度 リサイクル燃料資源貯蔵技術調査等(貯蔵 燃料長期健全性等確証試験に関する試験最終成果報告書)」

(平成19年3月 独立行政法人 原子力安全基盤機構)

別紙5 原子炉建屋(家)構造材への影響について

使用済燃料プールから冷却水が全て喪失し、燃料被覆管表面温度が上昇した状態では原子炉建屋(家)の構造材も温度が上昇することから、熱によるこれらの構造材のコンクリートの強度への影響を考察した。

1. 原子炉建屋(家) 天井及び燃料取替床以上の側壁

「1. 使用済燃料プール水大規模漏えい時の使用済燃料の健全性について」における評価では、原子炉建屋(家)天井及び燃料取替床以上の側壁の温度の評価値は外側では最大でも 54℃程度(1 号炉の場合)に留まるが内側では最大で 97℃程度(1 号炉の場合)となり、コンクリートの温度に関する基準値として用いられている 65℃を一部で超える結果となっている。

熱によるコンクリートの強度低下については、長期加熱やサイクル加熱によってコンクリート強度が低下しないとした長尾らの実験^[1]が高経年化技術評価書^[2]にて引用されており、図1に示すとおり長期加熱後のコンクリートの圧縮強度については、65~110℃で3.5年間加熱した場合でも強度低下は見られないことが報告されている。

このため、評価値程度の温度上昇であればコンクリートの強度に与える影響は小さいと考えられる。

2. 燃料取替床の床面及び使用済燃料プール壁

「1. 使用済燃料プール水大規模漏えい時の使用済燃料の健全性について」における評価では、燃料取替床の床面及び使用済燃料プール壁を放熱経路として考慮していないが、燃料取替床の床面及び使用済燃料プール壁についても加熱に伴う温度上昇が想定されることから考察を行った。

燃料取替床の床面については,原子炉建屋(家)天井及び燃料取替床以上の側壁と同様に原子炉建屋(家)内の空気にさらされていることから,原子炉建屋(家)天井及び燃料取替床以上の側壁と同程度の温度であり,コンクリートの強度に与える影響は小さいと考えられる。

使用済燃料プール壁については、使用済燃料からの輻射により加熱される 可能性が考えられるため、建屋(家)内空気温度の評価値が最も高い1号炉 について輻射を考慮した壁温度を評価した。

輻射による熱伝達は燃料ラックから壁内側に対して起こることから,燃料 温度は使用済燃料プール内の平均的なパラメータを考慮し,評価上の伝熱経 路として使用済燃料から壁内側への輻射,壁内の伝導及び壁外側から外側空 気を考慮し,壁面方向の熱伝達を無視して壁厚方向の熱伝達のみを考慮した。 主な評価条件を表1に示す。

壁の温度評価結果を図2に示す。輻射により時間とともに温度が上昇するが、最も温度が高くなる壁内表面では平衡状態に近づき、7日後で約167℃となった。

コンクリートの温度が 110℃を超えた場合の知見としては、長尾らの実験 [3]が同様に高経年化技術評価書[2]にて引用されており、図3に示すとおり少なくとも 175℃、7日間の条件で強度低下はみられていないことが確認されている。使用済燃料プール壁のコンクリート内表面はライナで覆われておりコンクリート中の水分逸散も生じないと考えられること及び保安規定に基づき整備している体制に従い使用済燃料プールに注水する等の措置を講じる時間を十分に確保できることから、使用済燃料プール壁のコンクリートの健全性に影響を及ぼす可能性は小さいと考えられる。

表1 使用済燃料プール壁の温度評価条件

項目	設定	備考
燃料温度	179℃ (一定)	代表温度として,使用済燃料プール内の平均発熱量(約 184kW)の燃料集合体内の平均空気温度に対し,ピーキングファクタを1として(※1)と同様に評価した被覆管温度
壁の内側空気 温度	112℃ (一定)	初期の壁内温度分布を高めにとるため, (※1)で評価した原子炉建家燃料取替床以 上の空気温度を使用
壁内初期温度分布	壁内側 112℃, 壁外側 26℃と して線形分布	初期の壁内温度分布を高めにとるため、内側空気温度(上記)及び外側空気温度(下記)に基づく線形分布を設定。なお、時間経過後の平衡状態に対する初期温度分布の影響は小さいと考えられる。
輻射量	(※2)参照	74 (200 20 1 10 20 14
壁厚		建家図面より設定
コンクリートの熱伝導率	2.56W/(m·K)	(※1)で使用した普通コンクリートの熱伝 達率を使用
コンクリート 密度	2100 kg/m³	建築分野で標準的に用いられている値を設 定
壁の外表面熱 伝達係数	4. 6W/(m ² ·K)	(※1)で使用した側壁の内表面熱伝達係数 と同じ値を使用
コンクリート 比熱	1.05kJ/kg/K	コンクリート標準示方書による
壁の外側空気 温度	26℃(一定)	原子炉建屋(家)の燃料取替床以下の区画 の温度として、(※1)で使用した2018年7 月1日の外気温度の1日平均値(建屋(家) 内であり太陽輻射効果を考慮しない)を設 定

(※1)「1. 使用済燃料プール水大規模漏えい時の使用済燃料の健全性について」における燃料被覆管表面温度評価

(※2)単位面積当たりの輻射量 q"は下式で表される

 $q" = \epsilon \cdot \sigma (T_{\text{fuel}}^{4} - T_{\text{1pwall}}^{4})$

ε:輻射吸収率 (=0.8: コンクリートの値)

 σ :ステファン-ボルツマン係数 (=5.67× 10^{-8} W/($m^2 \cdot K^4$))

T_{fuel}:燃料温度, T_{lpwall}:壁の内表面温度

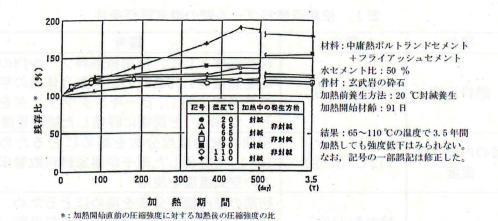


図1 長期加熱後のコンクリートの圧縮強度の変化[2]

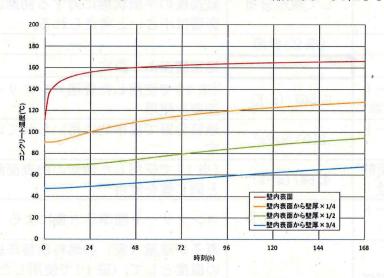


図2 使用済燃料プール壁の温度評価結果

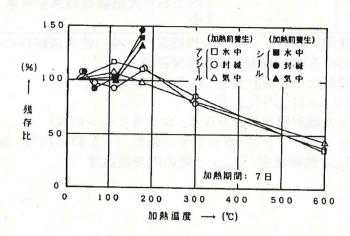


図3 加熱温度及び加熱前養生条件と圧縮強度との関係[3]

(参考文献)

- [1]「熱影響場におけるコンクリートの劣化に関する研究」(長尾他,第48回セメント技術大会講演集,1994年)
- [2]「福島第二原子力発電所4号炉 高経年化技術評価書」(東京電力ホールディングス (株), 平成28年8月)
- [3]「高温履歴を受けるコンクリートの物性に関する実験的研究」(長尾他,日本建築学会構造系論文集第457号,1994年3月)

別紙6 廃止措置計画認可申請書の記載の適正化について

3号及び4号炉発電用原子炉)の添付書類六追補の「2.使用済燃料プール水大 一部記載が不適切であるため下記の通り修正する。なお本補正 申請書の表記の修正であり、評価結果に影響を与えるものではない。 規模漏えい時の使用済燃料の健全性について」において, 2号, (1号, 廃止措置計画認可申請書 tó.

燃料集合体からの熱流束の算出式(18)において,燃料集合体表面からの熱流束「 $q^{"}$ 」とこれにピーキング係数を考慮 熱流束の記号を明確に区別するため, した熱流束「q"」を入れ替えて表記していた。これを修正するとともに, 集合体表面からの熱流束「q"」を「Q"」へ修正する。

熱の等価直径「den」の算出する際に使用する流路面積について,伝熱計算用の流路面積「A'」としてチャンネルボ また、 実際の評価条件に修正する。 流れの等価直径「d_{ef}」の算出に使用する流路面積と区別するため「摩擦損失計算用流路面積A」へ修正する。 ックスに囲まれる面積を設定し、被覆管表面の熱伝達係数を評価しているため、

・ 熱の等価直径の値が誤記であるため,正確な値へ修正する。

廃止措置計画認可申請書 補正前後比較表 (1号炉の例) 福島第二原子力発電所

補正 箇所	 (本) (本)<th>補 $Nu = 4.36 = \frac{h_a d_{eh}}{k_a}$ 操影法</th><th>派(11)攻 として, 熱伝達係数haは,</th><th>面温度 $h_a = \frac{k_a}{d_{oh}} \times 4.36$</th><th>のように求められる。 燃料集合体1体の発票</th><th>$q'' = \frac{Q}{L_h L}$</th><th>また、ピーキン</th><th>$q' = q'' \times PF$</th><th>燃料被覆管の表</th><th>$q''=h_a(T_{co}-T_a)$</th><th>然が集合体中間ナると、</th><th>THE PERSON NAMED IN</th><th></th>	補 $ Nu = 4.36 = \frac{h_a d_{eh}}{k_a} $ 操影法	派(11)攻 として, 熱伝達係数haは,	面温度 $ h_a = \frac{k_a}{d_{oh}} \times 4.36 $	のように求められる。 燃料集合体1体の発票	$q'' = \frac{Q}{L_h L}$	また、ピーキン	$q' = q'' \times PF$	燃料被覆管の表	$q''=h_a(T_{co}-T_a)$	然が集合体中間ナると、	THE PERSON NAMED IN	
埔正 前	、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	$\delta = \frac{h_a d_{eh}}{k_a}$	螫係数ha は,	×4.36	のように求められる。 然料填合体1体の発熱量Q(W)から,	(Ψ/m^2)	また, ピーキング係数の最大値をPFとして,	PF (W/ m^2)	燃料被覆管の表面温度をTco(K)とすると,第4図のとおり,	$r_0 - T_a$	燃料集合体中間の空気温度17gの代わりに保守側に出口空気温度17gを用いて評価 5と,		
	مكآ	(15)		(16)	A STATE OF THE STA	(17)	STATE OF STA	(18)	図のとおり,	(19)	こ出口空気温度プを用いて評価		
林	c. 燃料被覆管表面温度計算 管内層流における気体単相のNu数 (熱流束一定)	$Nu = 4.36 = \frac{h_a d_{eh}}{k_a}$	として、軟伝達係数もは、	$h_a = \frac{k_a}{d_{ch}} \times 4.36$	のように求められる。 然料集合体1体の発熱量Q(W)から,	$Q'' = \frac{Q}{L_h L}$	また、ピーキング係数の最大値をPFとして、	$q'' = Q'' \times PF$	燃料被覆管の表面温度をTco(K)とすると,第4図のとおり,	$q''=h_a(T_{co}-T_a)$	燃料集合体中間の空気温度での代わ	すると、	
補正後	熟流束一定)を,	(15)		(16)		(W/m^2) (17)	יצוב,	(Ψ/m^2) (18)	すると, 第4図のとおり,	(19)	燃料集合体中間の空気温度Taの代わりに保守側に出口空気温度Taを用いて評価	CONTRACTOR OF THE PROPERTY OF	
補正內容	・記載の適正化。										an hadipalan a		

福島第二原子力発電所 廃止措置計画認可申請書 補正前後比較表 (1号炉の例)

補正內容	流路面籍 [4] か歴梅指 中計	当 であることを	自記。 ・「ウォーターチャンネル」を	「ウォータ・ロッド」へ修正。	至「なられ」を昇田	するための流路面積は、保守的な条件としてチャンネルボック	スに囲まれる面積「A'」を設定	が追記。	・熱の等価直径の値を修正。		- Y			
4	・流路面籍「	算用の流路面積	追記。 ・「ウォーター	「ウォータ・ロー・	・ 紫の 単自国体 I deh	するための消 な条件として、	スに囲まれる	していることを追記。	・熱の等価直名					
	燃料健全性評価における主要な入力パラメータの値と根拠 (2/2)	根拠	ORIGEN2.2により崩壊熱を計算(令和2年2月1日時点)	チャンネルボックスに囲まれる面積 - (燃料棒+ウォー	タ・ロッド) に用訳れる 面積 ム ー 4 4 17 (4 2 無故語 4)	uef — ta/ ug 、a c ほ st 3 以 対 用 痛 れ 縁 長 さ L f よ り 算 出 り	単相での燃料集合体局所圧 損係数(=k(下部タイプレ	ート) +k (スペーサ) ×7+	K(エ部タイノアート))を告に計算流路全体の局所圧損係数を設定	チャンネルボックスに囲ま れる面積	$d_{ch} = 4A'/L_h (A' と 伝熱計算$ 用滯礼錄長さ L_h より算出)	燃料棒有効長を設定	最大線出力密度と炉心平均	
補正後	る主要な入力が	争	於 321 W										2.30	
	全性評価におけ	主要な入力パラメータ		瀬 田	有 A	流れの等価 直径 def		局所圧力損止必難、	× ※ ※ ※	伝熱計算用 流路面積A'	熟の等価直 径 den	発熱長さ 1	ピーキング	
	第4表 燃料倒	計算手順				① 自然対流熱伝達の計算			THE WATER		②燃料被覆管	表面温度計算	BC - E	
	パラメータの値と根拠 (2/2)	根拠	ORIGEN2.2により崩壊熱を計算(令和2年2月1 日時点)	チャンネルボックスに囲まれる面積し (燃料棒+ウォー	ターナインイン)に囲まれる	$d_{ef} = 4A/L_f$ (Aと摩擦損失計算用滯れ線長さ L_f より算出)	単相での燃料集合体局所圧相な数(=)(下部タイプレー	ト) +k(スペーサ) ×7+k(上	部タイプレート)) を基に計算流路全体の局所圧損係数を設定	$d_{ch} = 4A/L_h (A と 伝 熱 計 算 用 端 か 繰 長 と L_h と り 算 出)$	燃料棒有効長を設定	最大線出力密度と炉心平均線出力密度の比を設定		
補正前	る主要な入力バ	迴	約 321 W					_	1			2.30		
	全性評価におけ	燃料健全性評価における主要な入力パラメータ	主要な入力パラメータ	燃料集合体 1体の発熱 量 Q	流路面積	Ą	流れの等価 直径 def		局所压力損	米米数 ぐ	熱の等価直 径 den	光製版 は7	ピーキング 係数 PF	- 407
	第4表 燃料健	計算手順		Special and the special street, the special st	,	○ 自然対流数 伝達の計算			- derena		②然料被覆管 表面温度計算	No. of the latest	CAPIC IN 1870	
補正箇所	孫付書	類六追輔	2.使用浴燃料	水大規格が過ぎ	が開く	使用機物の無	全体に	してと	次 た た		を行うと	MAN IN THE PERSON NAMED IN COLUMN 1		
魟	追補	-16												

別紙7 MCNPコードの適用性について

MCNP5-1.60コード(以下「MCNPコード」という。)は、米国ロスアラモス国立研究所で開発された放射線による線量率等の評価を対象とした解析プログラムである。以下に、MCNPコードの特徴並びに検証および妥当性確認の結果を示し、使用済燃料プール水大規模漏えい時の使用済燃料からのスカイシャイン線による周辺公衆の放射線被ばくへの影響について、MCNPコードが適用可能であることを示す。

1. 解析コードの特徴

MCNPコードの主な特徴を以下に示す。

- ・遮蔽解析では、中性子(中性子捕獲の核反応により発生する二次ガンマ線も対象。例えば、中性子が水中を通る場合に生じる重要な核反応($\frac{1}{4}$ H(\mathbf{n} , γ) $\frac{2}{4}$ H))、一次ガンマ線、電子及びそれらのカップリングの挙動をモンテカルロ法により解析できる。
- ・三次元幾何形状は、主に面で区切られたセルにより構成する。セルは、平 面及び二次曲面を表す関数の値の正負で空間を区切ることにより構成さ れ、設定の自由度が大きい。
 - ・断面積には、連続エネルギ断面積ライブラリを使用するため、群定数断面 積ライブラリに起因する誤差が生じない。
 - ・線量率等を求めるための検出器として、タリーと呼ばれる面検出器、飛跡 長検出器、点検出器、リング検出器等が装備されている。解析者が、目的 に合ったものを取捨選択し、適切に設定することができる。

2. 検証 (Verification) 及び妥当性確認 (Validation)

MCNPコードは、主に遮蔽解析の分野で多数のベンチマーク問題が実施され、使用実績を有しており、解析機能全般について、十分な妥当性が確認されている。

また,米国では,使用済燃料貯蔵施設の審査指針であるNUREG-1567に おいて遮蔽解析ツールとして記載されており,遮蔽設計,線量評価等で使用されている。

こうした特徴・実績を踏まえて、株式会社原子力安全システム研究所から公開されている遮蔽解析のベンチマーク実験問題「モンテカルロコードEGS、MVP、MCNPによるガンマ線スカイシャイン線量評価性能の比較検討」[1] (2.2 節を参照)を例として引用した。

以下に、その要約を記す。

2.1. 検証 (Verification)

計算機能が適正であることは、MCNPコード配布時に同梱されたサンプル問題の再現により確認している。本解析コードの運用環境について、開発機関から提示された要件を満足していることを確認している。

2.2. 妥当性確認 (Validation)

(1) スカイシャイン実験解析

a. 妥当性の確認方法

米国のカンザス州立大学原子力工学遮蔽実験場で実施されたCo-60ガンマ線スカイシャイン実験を対象として、モンテカルロコードであるEGS 5コード、MVP2コード及びMCNPコードによる実験解析を比較し、M CNPコードの妥当性を確認する。

b. 解析条件

解析コードの比較評価のために、本ベンチマーク実験の幾何形状、物質組成及び線源について以下のようにモデル化し、三つの解析コードに対して 共通に用いた。

幾何形状については、実験体系がほぼサイロを中心とした軸対称形状であることから、円柱を用いてモデル化を行った。円柱の半径と高さは、文献値^[2]に従い定めた。

ベンチマーク実験の解析体系を図1に示す。

物質組成については、空気、土壌及びコンクリートをモデル化した。

c. 妥当性確認結果

MCNPコード、EGS5コード及びMVP2コードによる解析を行い、これらの解析結果を比較した。三つのコードの計算値とそれらの測定値に対する比(C/E値)を以下に示す。

なお、ここでのMVP2コードの計算値は線量換算係数を多群形式で与 えて求めたものである。

(a) 天井遮蔽無しの場合

天井遮蔽がない場合の解析結果を図2に示す。MCNPコードではC/E 値が0.95~1.26(平均1.09), EGS5コードではC/E値が1.02~1.37(平均1.15)であった。一方, MVP2コードではC/E値が1.19~1.56(平均1.35)であった。MCNPコードとEGS5コードの解析結果と比べると, どの測定地点でも約2割程度大きな解析結果となっている。

(b) 天井遮蔽の厚さ21cmの場合

天井遮蔽の厚さが21cmで、コンクリート密度を2.13g/cm³としたケース

の解析結果を図3に示す。MCNPコードではC/E値が1.13~1.35(平均1.24), EGS5コードではC/E値が1.12~1.38(平均1.28)であった。また, MVP2コードではC/E値が1.37~1.60(平均1.50)であった。コンクリート密度を2.30g/cm³としたケースの解析結果を図4に示す。MCNPコードではC/E値が0.91~1.09(平均1.01), EGS5コードではC/E値が0.82~1.12(平均1.03)であった。また, MVP2コードではC/E値が1.11~1.30(平均1.23)であった。

(c) 天井遮蔽の厚さ42.8cmの場合

天井遮蔽の厚さが42.8cmで、コンクリート密度を2.13g/cm³としたケースの解析結果を図5に示す。MCNPコードではC/E値が1.28~1.50(平均1.38), EGS5コードではC/E値が1.31~1.60(平均1.43)であった。また、MVP2コードではC/E値が1.47~1.74(平均1.65)であった。コンクリート密度を2.30g/cm³としたケースの解析結果を図6に示す。MCNPコードではC/E値が0.86~1.00(平均0.93),EGS5コードではC/E値が0.90~1.01(平均0.94)であった。また、MVP2コードではC/E値が1.00~1.17(平均1.08)であった。

(d) 評価結果

各コードの解析結果を比較すると、いずれのケースでもMCNPコードとEGS5コードの計算値はほぼ一致した。これに対して、MVP2コードの計算値はそれらに比べ約2割程度大きい結果となった。これはMVP2コードの線量計算で、換算係数を多群形式で与えたことが原因と推定される。

測定値との比較では、天井遮蔽無しの場合は、MCNPコードとEGS

5コードの解析結果は測定値をよく再現することができた。一方, 天井遮蔽21cmと42.8cmの場合は、コンクリート密度を2.13g/cm³としたケースで計算値は測定値を過大評価した。特に遮蔽の厚い方が過大評価の程度が大きくなっており、天井遮蔽中の鉄筋をモデル化していないことがこの過大評価の原因と考えられる。このことはコンクリート密度を2.30g/cm³としたケースでは、計算値は測定値に近い値となったことから裏付けられる。

妥当性確認では、文献[1]を引用し、スカイシャイン問題(一部、深層透過問題も含む)に関して実験結果と解析結果は、全体的に良い一致を示していることが確認できた。このため、使用済燃料プール水大規模漏えい時の使用済燃料からのスカイシャイン線による周辺公衆の放射線被ばくへの影響について、MCNPコードは適用可能である。

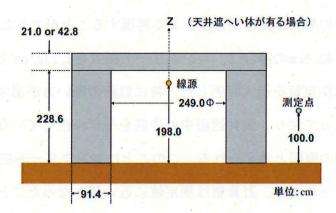


図1 ベンチマーク実験解析体系[1]

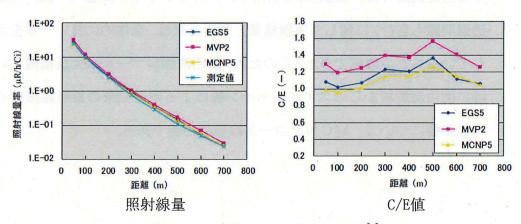


図2 天井遮蔽無しの場合の結果[1]

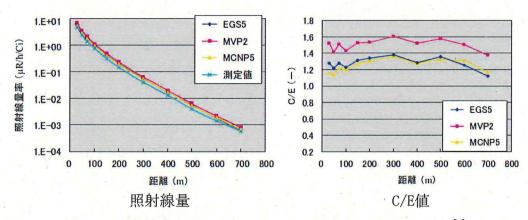


図3 天井遮蔽の厚さ21cm, 密度2.13g/cm3の場合の結果[1]

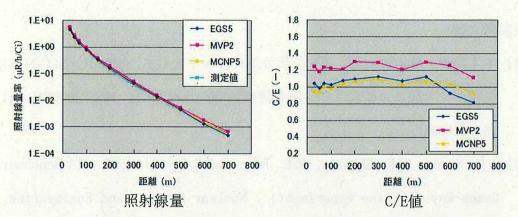


図4 天井遮蔽の厚さ21cm, 密度2.30g/cm3の場合の結果[1]

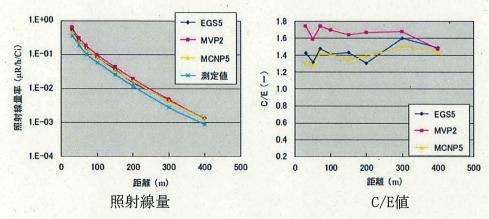


図5 天井遮蔽の厚さ42.8cm, 密度2.13g/cm3の場合の結果[1]

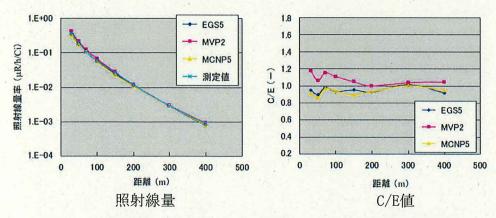


図 6 天井遮蔽の厚さ42.8cm, 密度2.30g/cm3の場合の結果[1]

(参考文献)

- [1] 木下郁男, 植木紘太郎, 「モンテカルロコードEGS, MVP, MCNPによるガンマ線スカイシャイン線量評価性能の比較検討」, INSS JOURNAL Vol. 16, (2009)
- [2] R. R. Nason, J. K. Shultis, R. E. Faw, and C. E. Clifford, 「A Benchmark Gamma-Ray Skyshine Experiment」, Nuclear Science and Engineering, Vol. 79, 404-416 (1981)

別紙8 使用済制御棒の評価条件について

「3. 使用済燃料プール水大規模漏えい時の使用済燃料からのスカイシャイン線による周辺公衆の放射線被ばくへの影響について」にて評価条件とした使用済制御棒の位置及び冷却期間の設定条件並びに線源の設定の考え方と保守性を示す。

(1)使用済制御棒の位置及び冷却期間

使用済制御棒の位置及び冷却期間の設定条件を表1に示す。

表1 使用済制御棒の位置及び冷却期間の設定条件

(単位:体)

			1号炉		2 5		3号炉		4号炉	
		北側	南側	西側	北側	南側	北側	南側	北側	南側
	冷却年数 10年未満	0	0	, 0	13	0	0	0	7	10
ボロン・カ ーバイド型	冷却年数 10年以上 20年未満	9	16	0	29	0	20	18	4	47
	冷却年数 20年以上	4	3	4	5	30	16	0	24	0
1 1 2 2 3 1 1 2 1	合計	36			77		54		92	
ハフニウム	冷却年数 10年以上 20年未満	8	0	17	26	0	22	0	13	9
型	冷却年数 20年以上	39	0	0	4	36	35	0	43	0
	合計		64		6	6	5	7	6	5

(2)使用済制御棒の線源の設定の考え方と保守性

・使用済制御棒の線源強度の設定に当たっては、図1に示すとおり、中性子照 射量の少ない使用済制御棒の下部に対しても、上部と同様の中性子照射量を 仮定し、制御棒全体が均一に放射化されたものとして線源強度を評価した。 また、中性子照射量は、線源強度が保守的となるよう、全ての使用済制御棒 の実績照射量を包絡する値を設定した。

・線源領域は、制御棒ラック領域(高さは中性子吸収材有効長まで)を囲む直 方体とし、線源と使用済制御棒材料を均一に配置した。このとき、線源領域 での遮蔽効果を小さく見積もるため、遮蔽要素として遮蔽効果の小さな(総 重量の小さい)ボロン・カーバイド型制御棒に基づく物質量を設定した。

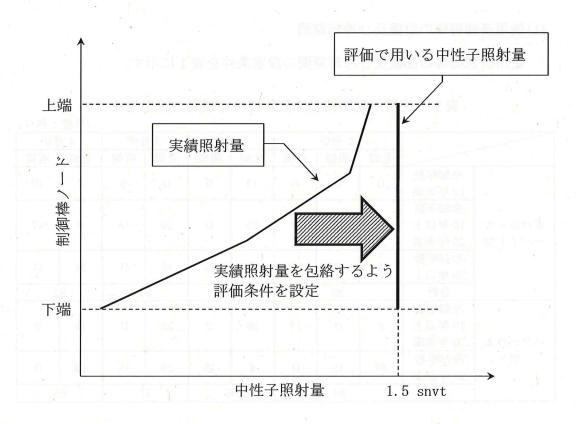


図1 中性子照射量概念図 (ボロン・カーバイド型の場合)

別紙9 SCALEコードの適用性について

1. はじめに

本資料は、「2. 使用済燃料プール水大規模漏えい時の未臨界性評価について」 に示す解析において使用したSCALEコードの適用性を説明するものである。

- 2. コードの概要
- (1) コード名 SCALE
- (2) 使用目的使用済燃料貯蔵設備の未臨界性評価
- (3) 開発機関 米国オークリッジ国立研究所 (ORNL)
- (4) 使用したバージョン

1号及び3号炉の未臨界性評価: SCALE6.1 (KENO V.a)

[核データライブラリ:ENDF/B-Ⅶ]

2号及び4号炉の未臨界性評価: SCALE6.0 (KENO V.a)

[核データライブラリ:ENDF/B-V]

(5) コードの概要

本解析コードは、核燃料物質、構造材等の幾何形状等を入力とし、乱数を使用して中性子の飛程を確率的に計算し、各中性子が吸収されて消滅するか、体系外に漏れるまでの反応過程で発生する核分裂中性子数を計算し、発生する核分裂中性子数と吸収又は漏れにより消滅する中性子数の比から実効増倍率を求めるものである。このため、計算体系が3次元の複雑な形状でも精度の高い計算ができる。

また、本解析コードは使用済燃料貯蔵設備の未臨界性評価に広く使用 されており、国内においても使用済燃料プール水大規模漏えい時の未臨 界性評価に係る多数の許認可実績を有するコードである。

3. 未臨界性評価への適用性

(1) 検証

本解析コードに附属のサンプル入力ファイルを用いて計算を実行し、 計算結果があらかじめ用意された参照解を再現することを確認してい る。なお、前述の状況から、本解析コードは、多数の使用及び審査の実 績に裏付けされている。

(2) 妥当性確認

本解析コードの妥当性確認として、吸収材の種類や濃縮度等、燃料ラックの臨界解析で重要なパラメータが国内BWRの使用済燃料貯蔵設備の条件に近い臨界実験を選定し、選定された臨界実験を対象としたベンチマーク試験問題に対する解析結果から、本解析コードによる評価の不確かさを求めている。

具体的には、1 号及び3 号炉の未臨界性評価に使用したS C A L E 6.1 (KENO V.a) について、0RNLが実施したS C A L E 6.1 (KE NO V.a) のベンチマーク試験問題に対する解析[1,2]の中から103ケースを選定している。選定した臨界実験のパラメータを表1に示す。

当解析の結果, 1号及び3号炉の未臨界性評価に使用した解析コードの実効増倍率の平均誤差 (バイアス, 計算値一実験値) は , 不確かさ (標準偏差の95%信頼度×95%確率) は となる。

ここで、103ケースの臨界実験に対し、横軸にEALF(Energy corresponding to the Average neutron Lethargy causing Fission: 核分裂に寄与する中性子の平均エネルギ)、縦軸に計算値/測定値 (C/E)を整理したものを図1に、今回の使用目的である使用済燃料貯蔵設備の未臨界性評価におけるEALF範囲を図2に示す。選定した臨界実験のEALFは使用済燃料貯蔵設備の未臨界性評価における適用範囲を包絡しており、また、異なるEALFに対してC/Eは1近傍に分布している。なお、臨界実験のパラメータのうち被覆材材質については、使用済燃料貯蔵設備の未臨界性評価における被覆材材質と一致していないが、被覆管の中性子吸収の寄与は小さいことから、予測性能の把握は可能である。

2号及び4号炉の未臨界性評価に使用したSCALE6.0 (KENO V. a) についても、1号及び3号炉に使用したSCALEとはバージョンが異なるものの、計算結果に大きな影響を与える変更ではないと考えられることから、上述のORNLが実施した妥当性確認が参考になる。これに加えて、本バージョンによる評価の不確かさを求めるため、米国PNLで実施されたPNL-3602臨界実験[3]のうち32ケースを対象とし、ベンチマーク試験問題に対する解析を実施している。選定した臨界実験のパラメータを表2に示す。

当解析の結果,2号及び4号炉の未臨界性評価に使用した解析コードの実効増倍率の平均誤差(バイアス,計算値-実験値)は ,不確かさ(標準偏差の95%信頼度×95%確率)は となる。

ここで、臨界実験の一部のパラメータについては、使用済燃料貯蔵設備の未臨界性評価の全てのパラメータ範囲を網羅していない。しかしな

がら、これらのパラメータについて、燃料棒等の外径の差異に対する評価のばらつきが同程度であること、被覆管の中性子吸収の寄与は小さいこと等から、予測性能の把握は可能である。また、選定した臨界実験のEALFの範囲は図2において水密度が大きい条件におけるEALFに限定されているが、今回の使用済燃料貯蔵設備の未臨界性評価において実効増倍率が最も厳しくなるのは冠水状態(水密度1.0g/cm³)であるため、評価の不確かさを把握するにあたり支障はない。

以上より、本解析コードの実効増倍率の計算値は臨界実験の実効増倍率に概ね等しく、臨界実験を適切に再現している。また、評価した不確かさは、使用済燃料貯蔵設備の未臨界性評価における評価基準(実効増倍率が0.95以下)において見込んだマージン(0.05)に比べて十分小さい。従って、本解析コードを燃料貯蔵設備の未臨界性評価に適用することは妥当である。

(参考文献)

- [1] W. J. Marshall et.al., "Criticality Safety Validation of SCALE 6.1", ORNL/TM-2011/450 Revised, January 2013 (revised)
- [2] "INTERNATIONAL HANDBOOK OF EVALUATED CRITICALITY SAFETY BENCHMARK EXPERIMENTS", OECD/NEA, September 2012 Edition
- [3] S. R. Bierman et.al., "Criticality Experiments with Subcritical Clusters of 2.35 wt% and 4.31 wt% 235U Enriched UO2 Rods in Water with Steel Reflecting Walls", NUREG/CR-1784 (PNL-3602), April 1981.

表1 選定した臨界実験のパラメータ範囲*1 (1号及び3号炉)

	項目		BWR燃	競設備及び燃料仕様の一夕範囲MAX	臨界	ぎした 実験の ータ範囲* ⁵ MAX
(ウラン燃料 ²³⁵ U 濃縮度	wt%		a lw		
	燃料材径	mm	Both Area		Republication of	
1.	燃料要素径	mm				
燃	被覆材材質	1 - 5	ジルカロ	11-2		
料	燃料要素ピッチ	mm		The same of	子を必須	
	燃料体内の減速材 体積/燃料体積	1				
	燃料要素配列条件		正方	配列	HI S. M. L. K.	A. State of the
)	体系条件		燃料体面	己列体系		
4-4	減速材		無/	堅水		
減速	減速材密度	g/cm ³	0	約1.0	1 自带从	[1]
材	減速材中のほう素 濃度	ppm	(
ラック	ラックセル材質	<u></u>	ボロン添加 鋼 (B-		生产的	\$ 4 E E
セル	B-SUS 製ラックセ ルのほう素添加量	wt%		April 1	(大少女子) 基础医基	Astonic de Econocido
反射体	反射体材質	-	軽水		nan	

注記*1:製造公差を含まない。

*2:モデルバンドルのバンドル平均濃縮度

*3:チャンネルボックス内での減速材と燃料ペレットの体積比

*4:燃料棒格子での減速材と燃料ペレットの体積比

*5:本表では、選定した臨界実験のうち、使用済燃料貯蔵設備の条件に近い、低濃縮ウラン燃料、熱中性子が支配的となる実験体系及び燃料棒と水等が混在する実験体系による臨界実験のパラメータ範囲を記す。

表 2 選定した臨界実験のパラメータ範囲*1 (2号及び4号炉)

項目		単位	BWR燃	裁設備及び 燃料仕様の 一タ範囲	選定した 臨界実験の パラメータ範囲			
	TAM YOUNG	- X.04	MIN	MAX	MIN	MAX		
	ウラン燃料 ²³⁵ U 濃縮度	wt%		la la	· 持是人 安全的			
_	燃料材径	mm		m.	E Sittle			
	燃料要素径	mm		nû.	图图是	FOR STATE		
燃	被覆材材質	g ·	ジルカロ	1 - 2	WHE			
料	燃料要素ピッチ	mm		100	- チルス薬	SIPM IN		
	燃料体内の減速材 体積/燃料体積				性的质道标 世界体现,	基本		
	燃料要素配列条件		正方	配列	J-SRUK, 67	逐步起!		
	体系条件		燃料体配	已列体系	并实际	(本)		
× 1.	減速材		無/車	圣水	THE REAL			
減速	減速材密度	g/cm ³	0	約1.0	Right	FR J.C		
材	減速材中のほう素 濃度	ppm	0		RCE OF	PER W		
ラック	ラックセル材質 -		ボロン添加 鋼 (B-		Riving	200		
セル	B-SUS 製ラックセ ルのほう素添加量	111±1%		A Res	ラックさ 最近加量	E B-SUS.		
反射体	反射体材質		軽	水	WHEN	发 按过 接 本		

注記*1:製造公差を含まない

*2:モデルバンドルのバンドル平均濃縮度

*3:チャンネルボックス内での減速材と燃料ペレットの体積比

*4:燃料棒格子での減速材と燃料ペレットの体積比

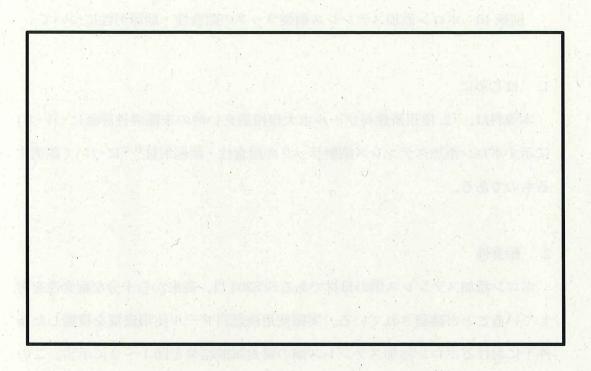


図1 選定した臨界実験の EALF と C/E の関係

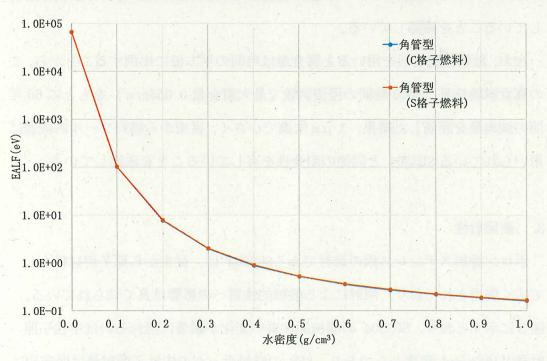


図2 使用済燃料貯蔵設備の未臨界性評価における EALF の範囲

別紙 10 ボロン添加ステンレス鋼製ラックの耐食性・耐照射性について

1. はじめに

本資料は、「2. 使用済燃料プール水大規模漏えい時の未臨界性評価について」に示すボロン添加ステンレス鋼製ラックの耐食性・耐照射性^[1,2]について説明するものである。

2. 耐食性

ボロン添加ステンレス鋼の母材である SUS304 は、従来から十分な耐食性を有していることが確認されている。実機使用済燃料プール使用環境を模擬した条件下におけるボロン添加ステンレス鋼の腐食試験結果を図1~2に示す。この結果から、ボロン添加ステンレス鋼は母材の SUS304 と同様に十分な耐食性を有していることを確認している。

なお、放物線則近似を用いると腐食量は時間の平方根に比例することから、この腐食試験結果(5000 時間の浸漬試験で最大腐食量 $0.053 \, \mathrm{g/m^2}$)をもとに $60 \, \mathrm{fl}$ 間の減肉量を評価した結果、 $1 \, \mu \, \mathrm{m}$ 未満で小さく、従来から燃料プール内機器に用いられている SUS304 と同等の耐食性を有していることを確認している。

3. 耐照射性

ボロン添加ステンレス鋼の母材であるSUS304 は、従来から原子炉材料として広く使用されており、照射による機械的性質への影響は良く知られている。図3に示すとおり、SUS304 の機械的性質の変化が顕著に現れるのは中性子照射量が 10^{19} n/cm² 程度からであり、SFP の燃料ラックの中性子照射量は保守的に見積もっても 10^{17} n/cm² 程度であるので、機械的性質にはほとんど影響がない。

また、ボロン添加ステンレス鋼を60年間使用した場合のB-10の減損率は、

保守的に見積もっても初期値の約0.001%未満であり、B-10 の減損による中性子吸収能力への影響はない。

(参考文献)

- [1] 「使用済燃料貯蔵ラックの使用材料としてのボロン添加ステンレス鋼について」(株式会社東芝, TLR-064, 1998年1月)
- [2]「使用済燃料貯蔵ラックの使用材料としてのボロン添加ステンレス鋼について」(株式会社日立製作所, HLR-061, 1998年3月)

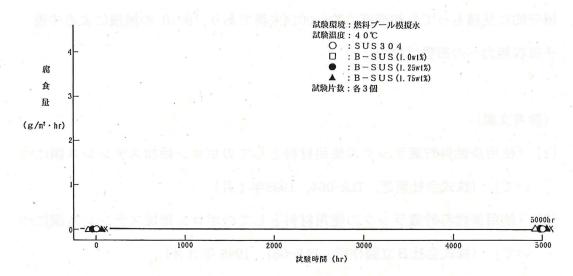


図1 ボロン添加ステンレス鋼腐食試験結果(40℃)

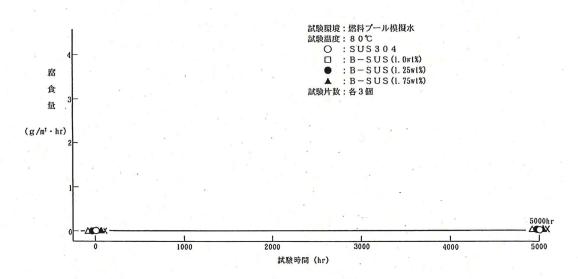


図2 ボロン添加ステンレス鋼腐食試験結果(80℃)

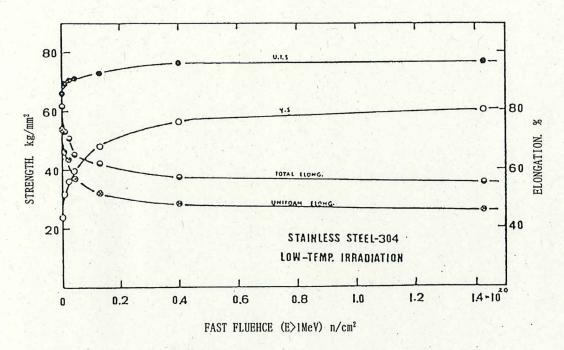


図3 SUS304の照射による機械的性質への影響